Skip to main content

Recent Innovations and Practices in Geotechnical Engineering for Sustainable Infrastructure Development

  • Conference paper
  • First Online:
Geohazard Mitigation

Abstract

The scarcity of natural materials such as good native soil, river sand, and aggregates has shifted the focus in recent years toward sustainable solutions in geotechnical engineering. Industrial ash such as fly ash, pond ash, and incinerated ash from other sources are being utilized either as a stabilizing additive or as a replacement of natural geomaterials for filling applications in embankment, bridge abutment, structural fill below foundations, and pavement sublayers. The stabilizing agents such as microsilica, ground granulated blast furnace slag, red mud from mine tailings, fly ash, biosolids, and lignin-based organic stabilizers have been explored by researchers, for improving various geotechnical aspects of different soils. Studies have also explored the application of pond ash for developing flowable fill, an alternative for conventional fill material. In recent years, the potential of old mined municipal solid waste is being explored for its utilization as a potential fill material. The application/utilization of geosynthetics for improving the soil properties is also a step toward sustainable geotechnical engineering. The present review captures some of these recent sustainable innovations and practices in geotechnical engineering that would play a vital role in the development of resilient rural and urban infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ACI 229R–99.: Controlled Low Strength Materials, American Concrete Institute (2005)

    Google Scholar 

  2. AL-Soudany, K.Y.: Improvement of expansive soil by using silica fume. Kufa J. Eng. 9(1), 222–239 (2017)

    Google Scholar 

  3. Al-Azzawi, A., Daud, K., Sattar, M.: Effect of silica fume addition on the behavior of silty-clayey soils. J. Eng. Dev. 16(1) (2012)

    Google Scholar 

  4. Alizadeh, V., Helwany, S., Ghorbanpoor, A., Soboldev, K.: Design and application of controlled low strength materials as a structural fill. Constr. Build. Mater. 53, 425–431 (2014)

    Article  Google Scholar 

  5. Altundogan, H., Altundogan, S., Tumen, F., Bildik, M.: Arsenic adsorption from aqueous slutions by activated red mud. Waste Manage. 22, 357–363 (2002)

    Article  CAS  Google Scholar 

  6. Arulrajah, A., Disfani, M., Suthagaran, V., Imteaz.: Select chemical and engineering properties of wastewater biosolids. Elsevier J. Waste Manage. 31, 2522–2526 (2011)

    Google Scholar 

  7. Bastian. R.: The biosolids (sludge) treatment, beneficial use, and disposal situation in the USA. European Water Pollut. Control J. 7(2), 62–79 (1997)

    Google Scholar 

  8. Cai, G., Zhang, T., Liu, S., Li, J., Jie, D.: Stabilization mechanism and effect evaluation of stabilized silt with lignin based on laboratory data. Marine Georesour. Geotechn. (2014)

    Google Scholar 

  9. Chen, Q., Indraratna, B., Carter, J., Rujikiatkamjorn, C.: A theoretical and experimental study on the behavior of lignosulfonate-treated sandy silt. Comput. Geotech. 61, 316–327 (2014)

    Article  Google Scholar 

  10. Chompoorat, T., Likitlersuang, S., Jongvivatsakul, P.: The performance of controlled low-strength material base supporting a high-volume asphalt pavement. KSCE J. Civ. Eng. 22(6), 2055–2063 (2018)

    Article  Google Scholar 

  11. Collivignarelli, M., Canato, M., Abba, A., Miino, M.: Biosolids: what are the different types of reuse? Elsevier J. Cleaner Prod. 238 (2019)

    Google Scholar 

  12. Deelwal, K., Dharavath, K., Kulshreshtha, M.: Evaluation of characteristic properties of red mud for possible use as a geotechnical material in civil construction. Int. J. Adv. Eng. Technol. 7, 1053–1059 (2014)

    Google Scholar 

  13. Dev, K., Robinson, R.: Pond ash based controlled low strength flowable fills for geotechnical pond ash based controlled low strength flowable fills for geotechnical engineering applications. Int. J. Geosynthetics Ground Eng. 1(32), 1–13 (2015)

    Google Scholar 

  14. Do, T.M., Kim, Y.S.: Engineering properties of controlled low strength material (CLSM) incorporating red mud. Int. J. Geo-Eng. 7(7), 1–17 (2016)

    Google Scholar 

  15. Fang, X., Wang, L., Poon, C.S., Baek, K., Tsang, D.C.W., Kwok, S.K.: Transforming waterworks sludge into controlled low-strength material: bench-scale optimization and field test validation. J. Environ. Manage. 232, 254–263 (2019)

    Article  CAS  Google Scholar 

  16. Feng, S., Gao, K., Chen, Y., Li, Y., Zhang, L.M., Chen, H.X.: Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manage. (2016)

    Google Scholar 

  17. Frischknecht, R., Stucki, M., Büsser, S., Itten, R.: Comparative life cycle assessment of geosynthetics vs conventional construction materials. Ground Eng. 45(10), 24–28 (2012)

    Google Scholar 

  18. Ghavami, S., Farahani, B., Jahanbakhsh, H., Nejad, F.M.: Effects of silica fume and nano-silica on the engineering properties of kaolinite clay. AUT J. Civil Eng. 2(2), 135–142 (2018)

    Google Scholar 

  19. Gohil, D., Solanki, C., Desai, A.: Application of Geosynthetics for Ground Improvement: an overview. IGC 2009, Guntur, India (2009)

    Google Scholar 

  20. Goren, S., Alagha, O.: Soil treatment with lignin sulphide chemical stabilizer: environmental and structural assessment. J. Residuals Sci. Technol. 5(4) (2008)

    Google Scholar 

  21. Griffin, J.R., Brown, E.R.: Flowable fill for rapid pavement repair. J. Transp. Res. Board 2235, 88–94 (2011)

    Article  Google Scholar 

  22. Guangyin, Z., Haiyan, Z., Tiantao, Z., Youchi, Z.: Performance appraisal of controlled low-strength material using sewage sludge and refuse incineration bottom ash. Chin. J. Chem. Eng. 20(1), 80–88 (2012)

    Article  Google Scholar 

  23. Harish, G., Madesh, N., Swati G., Reddy, V., Deepak, H.: Use of Geosynthetics for Sustainable Pavements. Sustainable Engineering, Lecture Notes in Civil Engineering (2019)

    Google Scholar 

  24. Hua, Y., Heal, K.V., Friesl-hanl, W.: The use of red mud as an immobilizer for metal/ metalloid-contaminated soil: a review. J. Hazard. Mater 325, 17–30 (2017)

    Article  CAS  Google Scholar 

  25. Hull, R.M., Krogmann, U., Strom, P.F.: Composition and characteristics of excavated materials from a new jersey landfill. J. Environ. Eng. 131(3), 478–490 (2005)

    Article  CAS  Google Scholar 

  26. IS 2720-4.: Methods of test for soils, Part 4: grain size analysis, Bureau of Indian Standards, New Delhi, India (1985)

    Google Scholar 

  27. Ingunza, M., Duarte, A., Nascimento, R.: Use of sewage sludge as raw material in the manufacture of soft-mud bricks. J. Mater. Civil Eng. 23(6) (2011)

    Google Scholar 

  28. Jha, G., Kumar, D., Sivapullaiah, P.: Influence of fly ash on geotechnical behaviour of red mud: a micro-mechanistic Study. Geotech. Geol. Eng. 38, 6157–6176 (2020)

    Google Scholar 

  29. Kalkan, E.: Utilization of red mud as a stabilization material for the preparation of clay liners. Eng. Geol. 87, 220–229 (2006)

    Article  Google Scholar 

  30. Kalkan, E.: Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume. Appl. Clay Sci. 52(4), 345–352 (2011)

    Article  CAS  Google Scholar 

  31. Kim, Y., Dinh, B.H., Do, T.M., Kang, G.: Development of thermally enhanced controlled low-strength material incorporating different types of steel-making slag for ground-source heat pump system. Renewable Energy 150, 116–127 (2020)

    Article  Google Scholar 

  32. Kim, Y.S., Do, T.M., Kim, M.J., Kim, B.J., Kim, H.K.: Utilization of by-product in controlled low-strength material for geothermal systems: engineering performances, environmental impact, and cost analysis. J. Cleaner Prod. 172, 909–920 (2018)

    Google Scholar 

  33. Lachemi, M., Sahmaran, M., Hossain, K.M.A., Lotfy, A., Shehata, M.: Properties of controlled low-strength materials incorporating cement kiln dust and slag. Cement Concr. Compos. 32, 623–629 (2010)

    Article  CAS  Google Scholar 

  34. Lima, M., Thives, L., Haritonovs, V., Bajars, K.: Red mud application in construction industry: review of benefits and possibilities. IOP Conf. Series: Mater. Sci. Eng. 251 (2017)

    Google Scholar 

  35. Lin, W., Weng, T., Cheng, A., Chao, S., Hsu, H.: Properties of controlled low strength material with circulating fluidized bed combustion ash and recycled aggregates. Materials 5, 1–11 (2018)

    Article  Google Scholar 

  36. Ling, T.C., Kaliyavaradhan, S.K., Poon, C.S.: Global perspective on application of controlled low-strength material (CLSM) for trench backfilling—an overview. Constr. Build. Mater. 158, 535–548 (2018)

    Article  Google Scholar 

  37. Maghoolpilehrood, F., Disfani, M., Arulrajah, A.: Geotechnical characteristics of aged biosolids stabilized with cement and lime. Aust. Geomech. J. 48(3), 113–120 (2013)

    Google Scholar 

  38. Maghoolpilehrood, F., Disfani, M., Arulrajah, A.: Geotechnical investigation of stabilized municipal biosolids. Int. Conf. Adv. Civil Eng. Sustain. Dev. 27–29 (2014)

    Google Scholar 

  39. Manara, P., Zabaniotou, Z.: Towards sewage sludge-based biofuels via thermochemical conversion—a review. Elsevier J. Renew. Sustain. Energy Rev. 16, 2566–2582 (2012)

    Article  CAS  Google Scholar 

  40. Masi, S., Caniani, D., Grieco, E., Lioi, D.S., Mancini, I.M.: Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Manage. 34(3), 702–710 (2014)

    Article  CAS  Google Scholar 

  41. Mohajerani, A., Lound, S., Liassos, G., Kurmus, H., Ukwatta, A., Nazari, M.: Physical mechanical and chemical properties of biosolids and raw brown coal fly ash, their combination for road structure fill applications. J. Cleaner Prod. (2017)

    Google Scholar 

  42. Mujtaba, H., Aziz, T., Farooq, K., Sivakugan, N., Das, B.: Improvement in engineering properties of expansive soils using ground granulated blast furnace slag. J. Geol. Soc. India 92, 357–362 (2018)

    Article  CAS  Google Scholar 

  43. Mukiza, E., Zhang, L., Liu, X., Zhang, N.: Utilization of red mud in road base and subgrade materials: a review. Resour. Conserv. Recycl. 141, 187–199 (2019)

    Article  Google Scholar 

  44. Naganathan, S., Razak, H.A., Hamid, S.N.A.: Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust. Mater. Design 33, 56–63 (2012)

    Article  CAS  Google Scholar 

  45. Neeladharan, C., Muralidharan, A., Mohan, K., Sayeed, M., Azeez, A., Faizan, M., Arafath, Y.: Stabilization of soil using fly ash with ground granulated blast furnace slag (GGBS) as binder. Suraj Punj J. Multi. Res. 9(4), 23–29 (2019)

    Google Scholar 

  46. Neeraja, D., Narsimha, R.: Use of certain admixtures in the construction of pavement on expansive clayey subgrade. Int. J. Eng. Sci. Technol. 2(11), 6108–6114 (2010)

    Google Scholar 

  47. Negi, C., Yadav, R.K., Singhai, A.K.: Effect of silica fume on engineering properties of black cotton soil. Int. J. Comput. Eng. Res. 3(7) (2013)

    Google Scholar 

  48. Okuyucu, O., Jayawickrama, P., Senadheera, S.: Mechanical properties of steel fiber–reinforced self-consolidating controlled low-strength material for pavement base layers. J. Mater. Civil Eng. 31(9) (2020)

    Google Scholar 

  49. Ona, J., Ferrer, A., Osorio, F.: Erosion and vegetation cover in road slopes hydro seeded with sewage sludge. Elsevier J. Trans. Res. Part D 16, 465–468 (2011)

    Article  Google Scholar 

  50. Palmeira, E.: Sustainability and innovation in geotechnics: contributions from geosynthetics. Soils and Rocks, São Paulo 39(2), 113–135 (2016)

    Google Scholar 

  51. Panjehpour, M., Abdullah, A., Demirboga, R.: A review for characterization of silica fume and its effects on concrete properties. Int. J. Sustain. Constr. Eng. Technol. 2(2) (2011)

    Google Scholar 

  52. Parashar, P., Choudhary, M., Nagar, B.: Utilization of reclaimed asphalt pavement materials in rigid pavement. Int. J. Eng. Res. Technol. 9(6), 99–102 (2020)

    Google Scholar 

  53. Parrodi, J., Höllen, D., Pomberger, R.: Characterization of fine fractions from landfill mining: a review of previous investigations. Detritus 2(1), 46 (2018)

    Article  Google Scholar 

  54. Phanikumar, B.R., Jagapathi, R., Ramanjaneya, R.: Silica fume stabilization of an expansive clay subgrade and the effect of silica fume-stabilised soil cushion on its CBR. Geomech. Geoeng. (2019)

    Google Scholar 

  55. Pontikes, Y., Angelopoulos, G.: Resources, conservation and recycling bauxite residue in ccement and cementitious applications: current status and a possible way forward. Resour. Conserv. Recycl. 73, 53–63 (2013)

    Google Scholar 

  56. Rao, C., Naidu, P., Adiseshu, P.: Application of GGBS stabilized red mud in road construction. IOSR J. Eng. (IOSRJEN) 2(8), 14–20 (2012)

    CAS  Google Scholar 

  57. Rubinos, D., Spagnoli, G.: Utilization of waste products as alternative landfill liner and cover materials–a critical review. Crit. Rev. Environ. Sci. Technol. 48(4), 376–438 (2018)

    Article  CAS  Google Scholar 

  58. Santos, E., Vilar, O., Palmeira, E.: The use of recycled construction and demolition waste in geosynthetic reinforced structures: influence of the recycling process. In: Proceedings 6th International Conference on Environmental Geotechnics, vol. 1, pp. 1105–1108 (2010)

    Google Scholar 

  59. Saravanan, R., Udhayakumar, T., Dinesh, S., Venkatasubramanian, C., Muthu, D.: Effect of addition of GGBS and lime in soil stabilisation for stabilising local village roads in Thanjavur region. Earth Environ. Sci. 80 (2017)

    Google Scholar 

  60. Sharma, A., Sivapullaiah, P.: Improvement of Strength of Expansive soil with waste Granulated Blast Furnace Slag. GeoCongress, ASCE (2012)

    Google Scholar 

  61. Silitonga, E.: Experimental research of stabilization of polluted marine dredged sediments by using silica fume. In: MATEC Web of Conferences 138, EACEF (2017)

    Google Scholar 

  62. Singh, V.K., Das, S.K.: Performance of controlled low strength material made using industrial by-products. IOP Conf. Series: Earth Environ. Sci. 491, 1–9 (2020)

    Google Scholar 

  63. Somani, M., Datta, M., Ramana, G.V., Sreekrishnan, T.R.: Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: case study of three dumpsites from India. Waste Manage. Res. 36(8), 744–755 (2018)

    Article  CAS  Google Scholar 

  64. Sridevi, G., Sahoo, S., Sen, S.: Stabilization of Expansive Soil with Red Mud and Lime. Ground Improvement Techniques and Geosynthetics. Lecture Notes in Civil Engineering, (14). Springer, Singapore (2019)

    Google Scholar 

  65. Tchobanoglous, G., Burton F., Stensel, H.: Wastewater Engineering Treatment and Reuse, fourth ed. McGraw-Hill Higher Education, Boston, US (2003)

    Google Scholar 

  66. Tsakiridis, P., Agatzini, S., Oustadakis, P.: Red mud addition in the raw meal for the production of portland cement clinker. J. Hazard. Mater. 116, 103–110 (2004)

    Article  CAS  Google Scholar 

  67. Wang, L., Hu, G., Lyu, F., Yue, T., Tang, H., Han, H., Yang, Y., Liu, R., Sun, W.: Application of red mud in wastewater treatment. Minerals 9(5), 281 (2019)

    Google Scholar 

  68. Wu, C., Liu, D.: Mineral phase and physical properties of red mud calcined at different temperatures. J. Nanomater (2012)

    Google Scholar 

  69. Yadu, L., Tripathi, R.K.: Effect of granulated blast furnace slag in the engineering behaviour of stabilized soft soil. Procedia Eng. 51, 125–131 (2013)

    Article  Google Scholar 

  70. Yao, Y., Sun, H.: A novel silica alumina-based backfill material composed of coal refuse and fly ash. J. Hazard. Mater. 213–214, 71–82 (2012)

    Article  Google Scholar 

  71. Zhang, T., Cai, G., Liu, G., Puppala, A.: Experimental investigation of thermal and mechanical properties of lignin treated silt. Eng. Geol. 196, 1–11 (2015)

    Article  Google Scholar 

  72. Zhang, T., Cai, G., Liu, G., Puppala, A.: Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product. KSCE J. Civil Eng. 1–12 (2016)

    Google Scholar 

  73. Zhang, T., Cai, G., Liu, S.: Assessment of mechanical properties in recycled lignin-stabilized silty soil as base fill material. J. Cleaner Prod. 1–12 (2017)

    Google Scholar 

  74. Zhang, T., Cai, G., Liu, S.: Application of lignin-stabilized silty soil in highway subgrade: a macroscale laboratory study. J. Mater. Civil Eng. 30(4) (2018)

    Google Scholar 

  75. Zhang, T., Yang, Y., Liu, S.: Application of biomass by-product lignin stabilized soils as sustainable geomaterials: a review. Sci. Total Environ. 728 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan K. R. Iyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalal, P.H., Patil, M., Wanare, R., Dave, T.N., Iyer, K.K.R. (2022). Recent Innovations and Practices in Geotechnical Engineering for Sustainable Infrastructure Development. In: Adhikari, B.R., Kolathayar, S. (eds) Geohazard Mitigation. Lecture Notes in Civil Engineering, vol 192. Springer, Singapore. https://doi.org/10.1007/978-981-16-6140-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6140-2_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6139-6

  • Online ISBN: 978-981-16-6140-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics