Skip to main content

Dyes: Classification, Pollution, and Environmental Effects

  • Chapter
  • First Online:
Dye Biodegradation, Mechanisms and Techniques

Abstract

There are a wide variety of textile dyes including reactive, direct, vat, sulfur, disperse, basic, and acid dyes. Therefore, the classification of dyes has become mandatory due to the increase in the annual global production of these compounds. They can be classified according to their chemical compositions (azo, anthraquinone, nitroso, nitro, indigoïde, cyanine, phtalocyanine, and triphenylmethane) or according to their field of application to different substrates such as textile fibers, paper, leathers, and plastics. In our new investigation, we have been able to describe the different families of textile dyes according to their chemical structures (chromophoric/auxochromic), application methods in the textile industry, and their Color Index (C.I). The presence of these dyes in the liquid effluents from washing textiles cause a negative impact on the balance of the aquatic environment, which requires prior treatment of these effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel A (2012) 16—The history of dyes and pigments: from natural dyes to high performance pigments. In: Best J (ed) Colour design. Woodhead Publishing Series in Textiles. Woodhead Publishing, pp 433–470. https://doi.org/10.1533/9780857095534.3.433

  2. Al-Degs Y, Khraisheh MAM, Allen SJ, Ahmad MN (2000) Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res 34:927–935

    Article  CAS  Google Scholar 

  3. Aljamali NM (2015) Review in azo compounds and its biological activity. Biochem Anal Biochem 4:1–4

    Article  Google Scholar 

  4. Ameenudeen S, Unnikrishnan S, Ramalingam K (2021) Statistical optimization for the efficacious degradation of reactive azo dyes using Acinetobacter baumannii JC359. J Environ Manag 279:111512. https://doi.org/10.1016/j.jenvman.2020.111512

    Article  CAS  Google Scholar 

  5. Antoniotti S, Duñach E (2002) Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett 43:3971–3973

    Article  CAS  Google Scholar 

  6. Arivithamani N, Giri Dev VR (2017) Sustainable bulk scale cationization of cotton hosiery fabrics for salt-free reactive dyeing process. J Clean Prod 149:1188–1199. https://doi.org/10.1016/j.jclepro.2017.02.162

    Article  CAS  Google Scholar 

  7. Arshad R, Bokhari TH, Khosa KK, Bhatti IA, Munir M, Iqbal M, Iqbal DN et al (2020) Gamma radiation induced degradation of anthraquinone Reactive Blue-19 dye using hydrogen peroxide as oxidizing agent. Radiat Phys Chem 168:108637. https://doi.org/10.1016/j.radphyschem.2019.108637

    Article  CAS  Google Scholar 

  8. Asgher M, Batool S, Bhatti HN, Noreen R, Rahman SU, Javaid Asad M (2008) Laccase mediated decolorization of vat dyes by Coriolus versicolor IBL-04. Int Biodeterior Biodegrad 62:465–470. https://doi.org/10.1016/j.ibiod.2008.05.003

    Article  CAS  Google Scholar 

  9. Asif Tahir M, Bhatti HN, Iqbal M (2016) Solar red and brittle blue direct dyes adsorption onto Eucalyptus angophoroides bark: equilibrium, kinetics and thermodynamic studies. J Environ Chem Eng 4:2431–2439. https://doi.org/10.1016/j.jece.2016.04.020

    Article  CAS  Google Scholar 

  10. Aysha T, Zain M, Arief M, Youssef Y (2019) Synthesis and spectral properties of new fluorescent hydrazone disperse dyes and their dyeing application on polyester fabrics. Heliyon 5:e02358. https://doi.org/10.1016/j.heliyon.2019.e02358

    Article  Google Scholar 

  11. Balçık U, Chormey DS, Ayyıldız MF, Bakırdere S (2020) Liquid phase microextraction based sensitive analytical strategy for the determination of 22 hazardous aromatic amine products of azo dyes in wastewater and tap water samples by GC-MS system. Microchem J 155:104712. https://doi.org/10.1016/j.microc.2020.104712

    Article  CAS  Google Scholar 

  12. Bechtold T, Turcanu A (2009) Electrochemical reduction in vat dyeing: greener chemistry replaces traditional processes. J Clean Prod 17:1669–1679. https://doi.org/10.1016/j.jclepro.2009.08.004

    Article  CAS  Google Scholar 

  13. Benaissa A (2012) Etude de la faisabilité d’élimination de certains colorants textiles par certains matériaux déchets d’origine naturelle. http://dspace.univ-tlemcen.dz/handle/112/1232

  14. Benkhaya S, Achiou B, Ouammou M, Bennazha J, Alami Younssi S, M’rabet S, El Harfi A (2019) Preparation of low-cost composite membrane made of polysulfone/polyetherimide ultrafiltration layer and ceramic pozzolan support for dyes removal. Mater Today Commun 19:212–219. https://doi.org/10.1016/j.mtcomm.2019.02.002

    Article  CAS  Google Scholar 

  15. Benkhaya S, M’rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6:e03271. https://doi.org/10.1016/j.heliyon.2020.e03271

    Article  Google Scholar 

  16. Benkhaya S, Mrabet S, El Harfi A (2020) A review on classifications, recent synthesis and applications of textile dyes. Inorg Chem Commun (Elsevier) 107891. https://doi.org/10.1016/j.inoche.2020.107891

  17. Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A, El Harfi A (2019) Textile finishing dyes and their impact on aquatic environs. Heliyon (Elsevier) 5:e02711.

    Google Scholar 

  18. Boudechiche N, Fares M, Ouyahia S, Yazid H, Trari M, Sadaoui Z (2019) Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchem J 146:1010–1018. https://doi.org/10.1016/j.microc.2019.02.010

    Article  CAS  Google Scholar 

  19. Bouhelassa M (2019) Etude de la dégradation photocatalytique d’un colorant synthétique et d’un tensioactif, Université Mentouri Constantine

    Google Scholar 

  20. Božič M, Kokol V (2008) Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes. Dyes Pigments 76:299–309. https://doi.org/10.1016/j.dyepig.2006.05.041

    Article  CAS  Google Scholar 

  21. Burkinshaw SM, Chaccour FE, Gotsopoulos A (1997) The aftertreatment of sulphur dyes on cotton. Dyes Pigments 34:227–241. https://doi.org/10.1016/S0143-7208(96)00075-7

    Article  CAS  Google Scholar 

  22. Burkinshaw SM, Chevli SN, Marfell DJ (2000) The dyeing of nylon 6,6 with sulphur dyes. Dyes Pigments 45:65–74. https://doi.org/10.1016/S0143-7208(00)00003-6

    Article  CAS  Google Scholar 

  23. Burkinshaw SM, Lagonika K, Marfell DJ (2003) Sulphur dyes on nylon 6,6—Part 1: The effects of temperature and pH on dyeing. Dyes Pigments 56:251–259. https://doi.org/10.1016/S0143-7208(02)00146-8

    Article  CAS  Google Scholar 

  24. Burkinshaw SM, Salihu G (2017) The role of auxiliaries in the immersion dyeing of textile fibres. Part 2: Analysis of conventional models that describe the manner by which inorganic electrolytes promote direct dye uptake on cellulosic fibres. Dyes Pigments. https://doi.org/10.1016/j.dyepig.2017.08.034

    Article  Google Scholar 

  25. Burkinshaw SM, Salihu G (2017) The role of auxiliaries in the immersion dyeing of textile fibres: Part 3 Theoretical model to describe the role of inorganic electrolytes used in dyeing cellulosic fibres with direct dyes. Dyes Pigments. https://doi.org/10.1016/j.dyepig.2017.11.039

    Article  Google Scholar 

  26. Burkinshaw SM, Salihu G (2019) The role of auxiliaries in the immersion dyeing of textile fibres: Part 8 Practical aspects of the role of inorganic electrolytes in dyeing cellulosic fibres with commercial reactive dyes. Dyes Pigments 161:614–627. https://doi.org/10.1016/j.dyepig.2017.09.072

    Article  CAS  Google Scholar 

  27. Burkinshaw SM, Son Y-A (2010) The dyeing of supermicrofibre nylon with acid and vat dyes. Dyes Pigments 87:132–138. https://doi.org/10.1016/j.dyepig.2010.03.009

    Article  CAS  Google Scholar 

  28. Cai Y, Liang Y, Navik R, Zhu W, Zhang C, Pervez MdN, Wang Q (2020) Improved reactive dye fixation on ramie fiber in liquid ammonia and optimization of fixation parameters using the Taguchi approach. Dyes Pigments 183:108734. https://doi.org/10.1016/j.dyepig.2020.108734

    Article  CAS  Google Scholar 

  29. Chakraborty JN (2010) Introduction to dyeing of textiles. In: Fundamentals and practices in colouration of textiles. Elsevier, pp 1–10. https://doi.org/10.1533/9780857092823.1

  30. Chakraborty JN (2010) 4—Dyeing with direct dye. In: Fundamentals and practices in colouration of textiles. Woodhead Publishing India, pp 27–42. https://doi.org/10.1533/9780857092823.27

  31. Chakraborty JN (2010) 16—Dyeing with metal–complex dye. In: Fundamentals and practices in colouration of textiles. Woodhead Publishing India, pp 175–183. https://doi.org/10.1533/9780857092823.175

  32. Chakraborty JN (2010) 17—Dyeing with basic dye. In: Fundamentals and practices in colouration of textiles. Woodhead Publishing India, pp 184–191. https://doi.org/10.1533/9780857092823.184

  33. Chakraborty JN (2010) 5—Dyeing with sulphur dye. In: Fundamentals and practices in colouration of textiles. Woodhead Publishing India, pp 43–56. https://doi.org/10.1533/9780857092823.45

  34. Chakraborty JN (2014) 5—Dyeing with sulphur dye. In: Chakraborty JN (ed) Fundamentals and practices in colouration of textiles. Woodhead Publishing India, pp 46–60. https://doi.org/10.1016/B978-93-80308-46-3.50005-4

  35. Chao YC, Chung YL, Lai CC, Liao SK, Chin JC (1999) Dyeing of cotton-polyester blends with anthraquinonoid vat dyes. Dyes Pigments 40:59–71. https://doi.org/10.1016/S0143-7208(98)00033-3

    Article  CAS  Google Scholar 

  36. Chebli D (2018) Traitement des eaux usées industrielles: Dégradation des colorants azoïques par un procédé intégré couplant un procédé d’oxydation avancée et un traitement biologique. PhD thesis

    Google Scholar 

  37. Chiarello LM, Mittersteiner M, de Jesus PC, Andreaus J, Barcellos IO (2020) Reuse of enzymatically treated reactive dyeing baths: evaluation of the number of reuse cycles. J Clean Prod 267:122033. https://doi.org/10.1016/j.jclepro.2020.122033

  38. Choudhury AR (2006) Textile preparation and dyeing. Science Publishers

    Google Scholar 

  39. Christie R (2014) Colour chemistry. Royal Society of Chemistry

    Google Scholar 

  40. Clark M (2011) Fundamental principles of dyeing. In: Handbook of textile and industrial dyeing: principles, processes and types of dyes, 1st ed

    Google Scholar 

  41. Cote PN, Lan X, Shakhnovich AI, Domingo MJ (1999) Sulfur dyes. Google Patents. https://www.google.com/patents/US5961670

  42. Crabtree RH (2009) The organometallic chemistry of the transition metals. Wiley

    Google Scholar 

  43. Cretescu I, Lupascu T, Buciscanu I, Balau-Mindru T, Soreanu G (2017) Low-cost sorbents for the removal of acid dyes from aqueous solutions. Process Saf Environ Prot 108:57–66. https://doi.org/10.1016/j.psep.2016.05.016

    Article  CAS  Google Scholar 

  44. Dai Y, Yang B, Ding Y, Xu H, Wang B, Zhang L, Chen Z et al (2020) Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 230:118051. https://doi.org/10.1016/j.saa.2020.118051

  45. de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil D, do SB (2018) Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. Appl Surf Sci 448:662–670. https://doi.org/10.1016/j.apsusc.2018.04.087

  46. Demirçalı A, Karcı F, Avinc O, Kahrıman AU, Gedik G, Bakan E (2019) The synthesis, characterization and investigation of absorption properties of disperse disazo dyes containing pyrazole and isoxazole. J Mol Struct 1181:8–13. https://doi.org/10.1016/j.molstruc.2018.12.033

    Article  CAS  Google Scholar 

  47. Dong X, Gu Z, Hang C, Ke G, Jiang L, He J (2019) Study on the salt-free low-alkaline reactive cotton dyeing in high concentration of ethanol in volume. J Clean Prod 226:316–323. https://doi.org/10.1016/j.jclepro.2019.04.006

    Article  CAS  Google Scholar 

  48. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  49. El-Aassar MR, Fakhry H, Elzain AA, Farouk H, Hafez EE (2018) Rhizofiltration system consists of chitosan and natural Arundo donax L. for removal of basic red dye. Int J Biol Macromol 120:1508–1514. https://doi.org/10.1016/j.ijbiomac.2018.09.159

    Article  CAS  Google Scholar 

  50. Es-sahbany H, Berradi M, Nkhili S, Hsissou R, Allaoui M, Loutfi M, Bassir D et al (2019) Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Mater Today Proc 13:866–875

    Article  CAS  Google Scholar 

  51. Fang S, Feng G, Guo Y, Chen W, Qian H (2020) Synthesis and application of urethane-containing azo disperse dyes on polyamide fabrics. Dyes Pigments 176:108225. https://doi.org/10.1016/j.dyepig.2020.108225

  52. Fradj AB, Boubakri A, Hafiane A, Hamouda SB (2020) Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration. Results Chem (Elsevier) 2:100017

    Google Scholar 

  53. Franco JH, da Silva BF, de Castro AA, Ramalho TC, Pividori MI, Zanoni MVB (2018) Biotransformation of disperse dyes using nitroreductase immobilized on magnetic particles modified with tosyl group: identification of products by LC-MS-MS and theoretical studies conducted with DNA. Environ Pollut 242:863–871. https://doi.org/10.1016/j.envpol.2018.07.054

    Article  CAS  Google Scholar 

  54. Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business Media

    Google Scholar 

  55. Gao A, Hu L, Zhang H, Fu D, Hou A, Xie K (2018) Silicone nanomicelle dyeing using the nanoemulsion containing highly dispersed dyes for polyester fabrics. J Clean Prod 200:48–53. https://doi.org/10.1016/j.jclepro.2018.07.312

    Article  CAS  Google Scholar 

  56. Garcia VSG, Rosa JM, Borrely SI (2020) Toxicity and color reduction of a textile effluent containing reactive red 239 dye by electron beam irradiation. Radiat Phys Chem 172:108765. https://doi.org/10.1016/j.radphyschem.2020.108765

  57. Garg D, Majumder CB, Kumar S, Sarkar B (2019) Removal of Direct Blue-86 dye from aqueous solution using alginate encapsulated activated carbon (PnsAC-alginate) prepared from waste peanut shell. J Environ Chem Eng 7:103365. https://doi.org/10.1016/j.jece.2019.103365

  58. Ghaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1–18

    Google Scholar 

  59. Ghanavatkar CW, Mishra VR, Sekar N (2020) Benzothiazole-pyridone and benzothiazole-pyrazole clubbed emissive azo dyes and dyeing application on polyester fabric: UPF, biological, photophysical and fastness properties with correlative computational assessments. Spectrochim Acta A Mol Biomol Spectrosc 230:118064. https://doi.org/10.1016/j.saa.2020.118064

  60. Gita S, Hussan A, Choudhury TG (2017) Impact of textile dyes waste on aquatic environments and its treatment. Environ Ecol 35:2349–2353

    Google Scholar 

  61. González AS, Martínez SS (2008) Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors. Ultrason Sonochem 15:1038–1042. https://doi.org/10.1016/j.ultsonch.2008.03.008

    Article  CAS  Google Scholar 

  62. Guo G, Li X, Tian F, Liu T, Yang F, Ding K, Liu C et al (2020) Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere 244:125510. https://doi.org/10.1016/j.chemosphere.2019.125510

  63. Gupta VK et al (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90:2313–2342

    Article  CAS  Google Scholar 

  64. Gürses A, Açıkyıldız M, Güneş K, Gürses MS (2016) Classification of dye and pigments. In: Dyes and pigments. Springer, pp 31–45

    Google Scholar 

  65. Hafdi H, Joudi M, Mouldar J, Hatimi B, Nasrellah H, El Mhammedi MA, Bakasse M (2020) Design of a new low cost natural phosphate doped by nickel oxide nanoparticles for capacitive adsorption of reactive red 141 azo dye. Environ Res 184:109322. https://doi.org/10.1016/j.envres.2020.109322

  66. Han R, Zhang S, Zhao W, Li X, Jian X (2009) Treating sulfur black dye wastewater with quaternized poly (phthalazinone ether sulfone ketone) nanofiltration membranes. Sep Purif Technol 67:26–30. https://doi.org/10.1016/j.seppur.2009.03.006

    Article  CAS  Google Scholar 

  67. Harichandran G, Prasad S (2016) SonoFenton degradation of an azo dye, direct red. Ultrason Sonochem 29:178–185. https://doi.org/10.1016/j.ultsonch.2015.09.005

    Article  CAS  Google Scholar 

  68. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  CAS  Google Scholar 

  69. Hassan MM, Saifullah K (2018) Ultrasound-assisted pre-treatment and dyeing of jute fabrics with reactive and basic dyes. Ultrason Sonochem 40:488–496. https://doi.org/10.1016/j.ultsonch.2017.07.037

    Article  CAS  Google Scholar 

  70. Hihara T, Okada Y, Morita Z (2002) Photo-oxidation and -reduction of vat dyes on water-swollen cellulose and their lightfastness on dry cellulose. Dyes Pigments 53:153–177. https://doi.org/10.1016/S0143-7208(02)00017-7

    Article  CAS  Google Scholar 

  71. Holme I (2006) Sir William Henry Perkin: a review of his life, work and legacy. Color Technol 122:235–251

    Article  CAS  Google Scholar 

  72. Horning RH (1978) Textile dyeing wastewaters: characterization and treatment. Environmental Protection Agency, Office of Research and Development

    Google Scholar 

  73. Humelnicu I, Băiceanu A, Ignat M-E, Dulman V (2017) The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: kinetics and thermodynamics. Process Saf Environ Prot 105:274–287. https://doi.org/10.1016/j.psep.2016.11.016

    Article  CAS  Google Scholar 

  74. Hunger K et al (2003) Health and safety aspects. Ind. Dyes Chem. Prop. Appl. 625–641

    Google Scholar 

  75. Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221. https://doi.org/10.1080/07388550600969936

    Article  CAS  Google Scholar 

  76. Ibrahim GS, Isloor AM, Lakshmi B (2020) Synthetic polymer-based membranes for dye and pigment removal. In: Synthetic polymeric membranes for advanced water treatment, gas separation, and energy sustainability. Elsevier, pp 39–52

    Google Scholar 

  77. Jabbar A, Ambreen R, S., Navaid, F.A. & Choudhary, M.I. (2019) A series of new acid dyes; study of solvatochromism, spectroscopy and their application on wool fabric. J Mol Struct 1195:161–167. https://doi.org/10.1016/j.molstruc.2019.05.019

    Article  CAS  Google Scholar 

  78. Jamil A, Bokhari TH, Javed T, Mustafa R, Sajid M, Noreen S, Zuber M et al (2020) Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization. J Mater Res Technol 9:1119–1128. https://doi.org/10.1016/j.jmrt.2019.11.035

    Article  CAS  Google Scholar 

  79. Kant R (2011) Textile dyeing industry an environmental hazard

    Google Scholar 

  80. Karcı F, Bakan E (2015) New disazo pyrazole disperse dyes: synthesis, spectroscopic studies and tautomeric structures. J Mol Liq 206:309–315

    Article  Google Scholar 

  81. Kariyajjanavar P, Narayana J, Nayaka YA (2013) Degradation of textile dye C.I. Vat Black 27 by electrochemical method by using carbon electrodes. J Environ Chem Eng 1:975–980. https://doi.org/10.1016/j.jece.2013.08.002

    Article  CAS  Google Scholar 

  82. Khaled A, El Nemr A, El-Sikaily A, Abdelwahab O (2009) Treatment of artificial textile dye effluent containing Direct Yellow 12 by orange peel carbon. Desalination Issues 1 and 2: First international workshop between the Center for the Seawater Desalination Plant and the European Desalination Society, vol 238, pp 210–232. https://doi.org/10.1016/j.desal.2008.02.014

  83. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Environmental deterioration and human health. Springer, pp 55–71

    Google Scholar 

  84. Khatri M, Ahmed F, Shaikh I, Phan D-N, Khan Q, Khatri Z, Lee H et al (2017) Dyeing and characterization of regenerated cellulose nanofibers with vat dyes. Carbohydr Polym 174:443–449. https://doi.org/10.1016/j.carbpol.2017.06.125

    Article  CAS  Google Scholar 

  85. Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod 87:50–57. https://doi.org/10.1016/j.jclepro.2014.09.017

    Article  CAS  Google Scholar 

  86. Khosravi A, Karimi M, Ebrahimi H, Fallah N (2020) Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant. J Environ Chem Eng 8:103701. https://doi.org/10.1016/j.jece.2020.103701

  87. Khouni I, Louhichi G, Ghrabi A (2020) Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: influence of dye mass loading rate and biomass concentration. Process Saf Environ Prot 135:364–382. https://doi.org/10.1016/j.psep.2020.01.011

  88. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, Chandra R et al (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng (Elsevier) 105012

    Google Scholar 

  89. Kuenemann MA, Szymczyk M, Chen Y, Sultana N, Hinks D, Freeman HS, Williams AJ et al (2017) Weaver’s historic accessible collection of synthetic dyes: a cheminformatics analysis. Chem Sci 8:4334–4339. Royal Society of Chemistry. https://doi.org/10.1039/C7SC00567A

  90. Kulandainathan MA, Muthukumaran A, Patil K, Chavan RB (2007) Potentiostatic studies on indirect electrochemical reduction of vat dyes. Dyes Pigments 73:47–54. https://doi.org/10.1016/j.dyepig.2005.10.007

    Article  CAS  Google Scholar 

  91. Lacasse K (2004) Colouring. In: Textile chemicals. Springer, pp 156–372. https://doi.org/10.1007/978-3-642-18898-5_5.pdf

  92. Li H, Qian H-F, Feng G (2019) Diversity-oriented synthesis of azo disperse dyes with improved fastness properties via employing Ugi four-component reaction. Dyes Pigments 165:415–420. https://doi.org/10.1016/j.dyepig.2019.02.039

    Article  CAS  Google Scholar 

  93. Li Y, Tan T, Wang S, Xiao Y, Li X (2017) Highly solvatochromic fluorescence of anthraquinone dyes based on triphenylamines. Dyes Pigments 144:262–270

    Article  CAS  Google Scholar 

  94. Ling W, Xinjiang S, Guoliang Z, Wenrui Z (2011) Performance of composite reverse osmosis membranes used in textile wastewater treatment and reutilization. In: 2011 international conference on computer distributed control and intelligent environmental. IEEE, pp 1611–1614

    Google Scholar 

  95. Liu Y, Fu J, Deng S, Zhang X, Shen F, Yang G, Peng H et al (2014) Degradation of basic and acid dyes in high-voltage pulsed discharge. J Taiwan Inst Chem Eng 45:2480–2487. https://doi.org/10.1016/j.jtice.2014.05.001

    Article  CAS  Google Scholar 

  96. Liu W, Liu J, Zhang Y, Chen Y, Yang X, Duan L, Dharmarajan R et al (2019) Simultaneous determination of 20 disperse dyes in foodstuffs by ultra high performance liquid chromatography–tandem mass spectrometry. Food Chem 300:125183. https://doi.org/10.1016/j.foodchem.2019.125183

  97. Luescher M (1993) Organic pigments. In: Surface coatings. Springer, pp 473–513. https://doi.org/10.1007/978-94-011-1220-8_28

  98. Maliyappa MR, Keshavayya J, Mahanthappa M, Shivaraj Y, Basavarajappa KV (2020) 6-Substituted benzothiazole based dispersed azo dyes having pyrazole moiety: synthesis, characterization, electrochemical and DFT studies. J Mol Struct 1199:126959. https://doi.org/10.1016/j.molstruc.2019.126959

  99. Maliyappa MR, Keshavayya J, Mallikarjuna NM, Pushpavathi I (2020) Novel substituted aniline based heterocyclic dispersed azo dyes coupling with 5-methyl-2-(6-methyl-1, 3-benzothiazol-2-yl)-2, 4-dihydro-3H-pyrazol-3-one: synthesis, structural, computational and biological studies. J Mol Struct 1205:127576. https://doi.org/10.1016/j.molstruc.2019.127576

  100. Manoukian M, Tavakol H, Fashandi H (2018) Synthesis of highly uniform sulfur-doped carbon sphere using CVD method and its application for cationic dye removal in comparison with undoped product. J Environ Chem Eng 6:6904–6915. https://doi.org/10.1016/j.jece.2018.10.026

    Article  CAS  Google Scholar 

  101. Mansour H, Boughzala O, Barillier D, Chekir-Ghedira L, Mosrati R (2011) Les colorants textiles sources de contamination de l’eau: CRIBLAGE de la toxicité et des méthodes de traitement. Rev Sci L’eauJournal Water Sci 24:209–238

    Google Scholar 

  102. Mijin DŽ, Avramov Ivić ML, Onjia AE, Grgur BN (2012) Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine. Chem Eng J 204–206:151–157. https://doi.org/10.1016/j.cej.2012.07.091

    Article  CAS  Google Scholar 

  103. Miladinova PM, Vaseva RK, Lukanova VR (2016) On the synthesis and application of some mono-and dis-azo acid dyes. J Chem Technol Metall 51:249–256

    CAS  Google Scholar 

  104. Miladinova PM, Lukanova VR (2017) Investigations on the dyeing ability of some reactive triazine azo dyes containing tetramethylpiperidine fragment. J Chem Technol Metall 52

    Google Scholar 

  105. Mishra VR, Ghanavatkar CW, Sekar N (2019) UV protective heterocyclic disperse azo dyes: spectral properties, dyeing, potent antibacterial activity on dyed fabric and comparative computational study. Spectrochim Acta A Mol Biomol Spectrosc 223:117353. https://doi.org/10.1016/j.saa.2019.117353

  106. Moradnia F, Taghavi Fardood S, Ramazani A, Gupta VK (2020) Green synthesis of recyclable MgFeCrO4 spinel nanoparticles for rapid photodegradation of direct black 122 dye. J Photochem Photobiol Chem 392:112433. https://doi.org/10.1016/j.jphotochem.2020.112433

    Article  CAS  Google Scholar 

  107. Nguyen TA, Fu C-C, Juang R-S (2016) Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J Environ Manag 182:265–271. https://doi.org/10.1016/j.jenvman.2016.07.083

    Article  CAS  Google Scholar 

  108. Nguyen TA, Fu C-C, Juang R-S (2016) Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. Chem Eng J 304:313–324. https://doi.org/10.1016/j.cej.2016.06.102

    Article  CAS  Google Scholar 

  109. Nguyen TA, Juang R-S (2013) Treatment of waters and wastewaters containing sulfur dyes: a review. Chem Eng J 219:109–117. https://doi.org/10.1016/j.cej.2012.12.102

    Article  CAS  Google Scholar 

  110. Nikfar S, Jaberidoost M (2014) Dyes and colorants. In: Wexler P (ed) Encyclopedia of toxicology, 3rd ed. Academic Press, Oxford, pp 252–261. https://doi.org/10.1016/B978-0-12-386454-3.00602-3

  111. Oluwaseun AC, Kola OJ, Mishra P, Singh JR, Singh AK, Cameotra SS, Micheal BO (2017) Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustain Chem Pharm (Elsevier) 6:26–36

    Google Scholar 

  112. Ozturk E, Yetis U, Dilek FB, Demirer GN (2009) A chemical substitution study for a wet processing textile mill in Turkey. J Clean Prod 17:239–247

    Article  CAS  Google Scholar 

  113. Pavithra KG, Jaikumar V (2019) Removal of colorants from wastewater: a review on sources and treatment strategies. J Ind Eng Chem (Elsevier) 75:1–19

    Google Scholar 

  114. Pei L, Luo Y, Saleem MA, Wang J (2021) Sustainable pilot scale reactive dyeing based on silicone oil for improving dye fixation and reducing discharges. J Clean Prod 279:123831. https://doi.org/10.1016/j.jclepro.2020.123831

    Article  CAS  Google Scholar 

  115. Penthala R, Heo G, Kim H, Lee IY, Ko EH, Son Y-A (2020) Synthesis of azo and anthraquinone dyes and dyeing of nylon-6,6 in supercritical carbon dioxide. J CO2 Util 38:49–58. https://doi.org/10.1016/j.jcou.2020.01.013

  116. Qin Y, Yuan M, Hu Y, Lu Y, Lin W, Ma Y, Lin X et al (2020) Preparation and interaction mechanism of Nano disperse dye using hydroxypropyl sulfonated lignin. Int J Biol Macromol 152:280–287. https://doi.org/10.1016/j.ijbiomac.2020.02.261

    Article  CAS  Google Scholar 

  117. Qiu J, Tang B, Ju B, Zhang S, Jin X (2020) Clean synthesis of disperse azo dyes based on peculiar stable 2,6-dibromo-4-nitrophenyl diazonium sulfate. Dyes Pigments 173:107920. https://doi.org/10.1016/j.dyepig.2019.107920

  118. Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron: a review. J Environ Manag 177:341–355. https://doi.org/10.1016/j.jenvman.2016.04.034

    Article  CAS  Google Scholar 

  119. Rasheed T, Nabeel F, Bilal M, Iqbal HMN (2019) Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal Agric Biotechnol 19:101154. https://doi.org/10.1016/j.bcab.2019.101154

  120. Ravi BN, Keshavayya J, Mallikarjuna M, Kumar V, Kandgal S (2020) Synthesis, characterization and pharmacological evaluation of 2-aminothiazole incorporated azo dyes. J Mol Struct 1204:127493. https://doi.org/10.1016/j.molstruc.2019.127493

  121. Ravi BN, Keshavayya J, Mallikarjuna NM, Santhosh HM (2020) Synthesis, characterization, cyclic voltammetric and cytotoxic studies of azo dyes containing thiazole moiety. Chem Data Collect 25:100334. https://doi.org/10.1016/j.cdc.2019.100334

  122. Reife A (1993) Dyes, environmental chemistry. Kirk-Othmer Encycl. Chem. Technol

    Google Scholar 

  123. Roessler A, Crettenand D (2004) Direct electrochemical reduction of vat dyes in a fixed bed of graphite granules. Dyes Pigments 63:29–37. https://doi.org/10.1016/j.dyepig.2004.01.005

    Article  CAS  Google Scholar 

  124. Roessler A, Jin X (2003) State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes Pigments 59:223–235. https://doi.org/10.1016/S0143-7208(03)00108-6

    Article  CAS  Google Scholar 

  125. Sahu O, Singh N (2019) 13—Significance of bioadsorption process on textile industry wastewater. In: Shahid-ul-Islam, Butola BS (eds) The impact and prospects of green chemistry for textile technology. The Textile Institute Book Series. Woodhead Publishing, pp 367–416. https://doi.org/10.1016/B978-0-08-102491-1.00013-7

  126. Said B, M’rabet S, Hsissou R, Harfi AE (2020) Synthesis of new low-cost organic ultrafiltration membrane made from Polysulfone/Polyetherimide blends and its application for soluble azoic dyes removal. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.02.102

    Article  Google Scholar 

  127. Saxena S, Raja ASM (2014) Natural dyes: sources, chemistry, application and sustainability issues. In: Roadmap to sustainable textiles and clothing. Springer, pp 37–80. https://doi.org/10.1007/978-981-287-065-0_2

  128. Sessa C, Weiss R, Niessner R, Ivleva NP, Stege H (2018) Towards a surface enhanced raman scattering (SERS) spectra database for synthetic organic colourants in cultural heritage. The effect of using different metal substrates on the spectra. Microchem J 138:209–225. https://doi.org/10.1016/j.microc.2018.01.009

    Article  CAS  Google Scholar 

  129. Shankarling GS, Deshmukh PP, Joglekar AR (2017) Process intensification in azo dyes. J Environ Chem Eng 5:3302–3308. https://doi.org/10.1016/j.jece.2017.05.057

    Article  CAS  Google Scholar 

  130. Shen C, Pan Y, Wu D, Liu Y, Ma C, Li F, Ma H et al (2019) A crosslinking-induced precipitation process for the simultaneous removal of poly(vinyl alcohol) and reactive dye: the importance of covalent bond forming and magnesium coagulation. Chem Eng J 374:904–913. https://doi.org/10.1016/j.cej.2019.05.203

    Article  CAS  Google Scholar 

  131. Shi S, Feng X, Gao L, Tang J, Guo H, Wang S (2020) Hydrolysis and carbonization of reactive dyes/cotton fiber in hydrothermal environment. Waste Manag 103:370–377. https://doi.org/10.1016/j.wasman.2019.12.052

    Article  CAS  Google Scholar 

  132. Shinde S, Sekar N (2019) Synthesis, spectroscopic characteristics, dyeing performance and TD-DFT study of quinolone based red emitting acid azo dyes. Dyes Pigments 168:12–27. https://doi.org/10.1016/j.dyepig.2019.04.028

    Article  CAS  Google Scholar 

  133. Shindy HA (2017) Fundamentals in the chemistry of cyanine dyes: a review. Dyes Pigments 145:505–513

    Article  CAS  Google Scholar 

  134. Siddiqua UH, Ali S, Hussain T, Bhatti HN, Asghar M (2017) The dyeing process and the environment: enhanced dye fixation on cellulosic fabric using newly synthesized reactive dye. Pol J Environ Stud (Scientific Investigation Committee) 26:2215–2222. https://doi.org/10.15244/pjoes/68430

  135. Siddiqua UH, Irfan M, Ali S, Sahar A, Khalid M, Mahr MS, Iqbal J (2020) Computational and experimental study of heterofunctional azo reactive dyes synthesized for cellulosic fabric. J Mol Struct 1221:128753. https://doi.org/10.1016/j.molstruc.2020.128753

  136. Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol (Taylor & Francis) 41:807–878

    Google Scholar 

  137. Singha NR, Chattopadhyay PK, Dutta A, Mahapatra M, Deb M (2019) Review on additives-based structure-property alterations in dyeing of collagenic matrices. J Mol Liq 293:111470. https://doi.org/10.1016/j.molliq.2019.111470

  138. Soltzberg LJ, Hagar A, Kridaratikorn S, Mattson A, Newman R (2007) MALDI-TOF mass spectrometric identification of dyes and pigments. J Am Soc Mass Spectrom (Elsevier) 18:2001–2006

    Google Scholar 

  139. Srinivasan S, Sadasivam SK, Gunalan S, Shanmugam G, Kothandan G (2019) Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environ Pollut 248:599–608. https://doi.org/10.1016/j.envpol.2019.02.080

    Article  CAS  Google Scholar 

  140. Stolte M, Vieth M (2001) Pathologic basis of mucosal changes in the esophagus. What the Endoscopist can (and must) see. ACTA Endosc 31:125–130

    Article  Google Scholar 

  141. Sun J, Wang H, Zheng C, Wang G (2019) Synthesis of some surfactant-type acid dyes and their low-temperature dyeing properties on wool fiber. J Clean Prod 218:284–293. https://doi.org/10.1016/j.jclepro.2019.01.341

    Article  CAS  Google Scholar 

  142. Tasli PT, Atay ÇK, Demirturk T, Tilki T (2020) Experimental and computational studies of newly synthesized azo dyes based materials. J Mol Struct 1201:127098. https://doi.org/10.1016/j.molstruc.2019.127098

  143. Taylor JA (2000) Recent developments in reactive dyes. Color Technol 30:93–108

    Article  CAS  Google Scholar 

  144. Thetford D, Chorlton AP (2004) Investigation of vat dyes as potential high performance pigments. Dyes Pigments 61:49–62. https://doi.org/10.1016/j.dyepig.2003.09.002

    Article  CAS  Google Scholar 

  145. Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222

  146. Turhan K, Durukan I, Ozturkcan SA, Turgut Z (2012) Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigments 92:897–901. https://doi.org/10.1016/j.dyepig.2011.07.012

    Article  CAS  Google Scholar 

  147. Vacchi FI, Von der Ohe PC, de Albuquerque AF, de Vendemiatti JAS, Azevedo CCJ, Honório JG, da Silva BF et al (2016) Occurrence and risk assessment of an azo dye—the case of Disperse Red 1. Chemosphere 156:95–100. https://doi.org/10.1016/j.chemosphere.2016.04.121

  148. Walters A, Santillo D, Johnston P (2005) An overview of textiles processing and related environmental concerns. Greenpeace Res. Lab. Dep. Biol. Sci. Univ. Exeter UK. http://www.greenpeace.org/seasia/th/Global/seasia/report/2008/5/textile-processing.pdf

  149. Wang M, Yang J, Wang H (2001) Optimisation of the synthesis of a water-soluble sulfur black dye. Dyes Pigments 50:243–246

    Article  CAS  Google Scholar 

  150. Wanyonyi WC, Onyari JM, Shiundu PM, Mulaa FJ (2019) Effective biotransformation of reactive black 5 dye using crude protease from Bacillus Cereus Strain KM201428. Energy Procedia Technol Mater Renew Energy. Environ Sustain (TMREES) 157:815–824. https://doi.org/10.1016/j.egypro.2018.11.247

    Article  CAS  Google Scholar 

  151. Welham A (2000) The theory of dyeing (and the secret of life). J Soc Dye Colour 116:140–143

    CAS  Google Scholar 

  152. Woo SW, Kim JY, Hwang TG, Lee JM, Kim HM, Namgoong J, Yuk SB et al (2019) Effect of weakly coordinating anions on photo-stability enhancement of basic dyes in organic solvents. Dyes Pigments 160:765–771. https://doi.org/10.1016/j.dyepig.2018.07.059

    Article  CAS  Google Scholar 

  153. Wu J, Li Q, Li W, Li Y, Wang G, Li A, Li H (2020) Efficient removal of acid dyes using permanent magnetic resin and its preliminary investigation for advanced treatment of dyeing effluents. J Clean Prod 251:119694. https://doi.org/10.1016/j.jclepro.2019.119694

  154. Yashni G, AlGheethi A, Maya Saphira Radin Mohamed R, Nor Hidayah Arifin S, Abirama Shanmugan V, Hashim Mohd Kassim A (2020) Photocatalytic degradation of basic red 51 dye in artificial bathroom greywater using zinc oxide nanoparticles. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.01.395

  155. Zhan Y, Zhao X, Wang W (2017) Synthesis of phthalimide disperse dyes and study on the interaction energy. Dyes Pigments 146:240–250. https://doi.org/10.1016/j.dyepig.2017.07.013

    Article  CAS  Google Scholar 

  156. Zhang H, Wang J, Xie K, Pei L, Hou A (2020) Synthesis of novel green reactive dyes and relationship between their structures and printing properties. Dyes Pigments 174:108079. https://doi.org/10.1016/j.dyepig.2019.108079

  157. Zhou X, Zhou Y, Liu J, Song S, Sun J, Zhu G, Gong H et al (2019) Study on the pollution characteristics and emission factors of PCDD/Fs from disperse dye production in China. Chemosphere 228:328–334. https://doi.org/10.1016/j.chemosphere.2019.04.136

    Article  CAS  Google Scholar 

  158. Zhu Y, Wang W, Ni J, Hu B (2020) Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater. Chemosphere 246:125753. https://doi.org/10.1016/j.chemosphere.2019.125753

    Article  CAS  Google Scholar 

  159. Zhuang M, Sanganyado E, Zhang X, Xu L, Zhu J, Liu W, Song H (2020) Azo dye degrading bacteria tolerant to extreme conditions inhabit nearshore ecosystems: optimization and degradation pathways. J Environ Manag 261:110222. https://doi.org/10.1016/j.jenvman.2020.110222

    Article  CAS  Google Scholar 

  160. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley

    Google Scholar 

Download references

Acknowledgements

The authors express their thanks to everyone who contributed from near or far to the completion of this valuable scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Benkhaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benkhaya, S., M’rabet, S., Lgaz, H., El Bachiri, A., El Harfi, A. (2022). Dyes: Classification, Pollution, and Environmental Effects. In: Muthu, S.S., Khadir, A. (eds) Dye Biodegradation, Mechanisms and Techniques. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-5932-4_1

Download citation

Publish with us

Policies and ethics