Skip to main content

Role of Quorum Sensing in the Survival of Rhizospheric Microbes

  • Chapter
  • First Online:
Microbes in Microbial Communities

Abstract

Quorum sensing (QS) signaling is a cell-to-cell communication or coordination at microbial population level. However, the ecological role of QS in complex or multi-species communities, principally in the milieu of community assemblage, has neither been experimentally discovered nor theoretically revealed. QS comprises the production of secreted signals (diffusible), which can diverge across diverse types of microbes. Over the past decades, there has been a significant accretion of data of the molecular mechanisms, gene regulons, signal structures, and behavioral responses related with QS systems gained. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have discovered, how QS coordinates interactions both within and between the species. Such studies of quorum sensing as a social behavior have relied on the development of “synthetic ecological” models that use nonclonal bacterial populations. Hence, the aim of this chapter is to understand how microbes might interact with one another in the plant root–associated soils using QS system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34(5):454–466

    CAS  Google Scholar 

  • Balasundararajan V, Dananjeyan B (2019) Occurrence of diversified N-acyl homoserine lactone mediated biofilm-forming bacteria in rice rhizoplane. J Basic Microbiol 59:1031–1039

    CAS  PubMed  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Cámara M, Hartmann A, Mañero FJG (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    CAS  PubMed  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2007) Rhizodeposition and microbial populations. The rhizosphere biochemistry and organic substances at the soil-plant interface. Taylor & Francis Group, New York

    Google Scholar 

  • Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cámara M, Koh CL, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11(1):1–4

    Google Scholar 

  • Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174(12):4026–4035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277(1):462–468

    CAS  PubMed  Google Scholar 

  • De Maeyer K, D’aes J, Hua GK, Perneel M, Vanhaecke L, Noppe H, Höfte M (2011) N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology 157(2):459–472

    PubMed  Google Scholar 

  • Fontaine L, Boutry C, Guédon E, Guillot A, Ibrahim M, Grossiord B, Hols P (2007) Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J Bacteriol 189(20):7195–7205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fravel DR, Roberts DP (1991) In situ evidence for the role of glucose oxidase in the biocontrol of Verticillium wilt by Talaromyces flavus. Biocontrol Sci Tech 1(2):91–99

    Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56(2):188–194

    CAS  PubMed  Google Scholar 

  • Garbeva P, Van Elsas JD, Van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant S 302(1):19–32

    CAS  Google Scholar 

  • Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie van Leeu 105:289–305. https://doi.org/10.1007/s10482-013-0082-3

    Article  Google Scholar 

  • He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185(3):809–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, Vol. 2. Enzymes, biological control and commercial applications. Taylor & Francis, London, pp 173–184

    Google Scholar 

  • Hrynkiewicz K, Baum C (2011) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer, New York, pp 35–64

    Google Scholar 

  • Jung BK, Khan AR, Hong SJ et al (2017) Quorum sensing activity of the plant growth promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Ann Microbiol 67:623–632

    CAS  Google Scholar 

  • Kumar A, Meena VS, Maurya BR, Raghuwanshi R, Bisht JK, Pattanayak A (2017) Towards the biological nitrogen fixation and nitrogen management in legume under sustainable agriculture. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2017.05.013

  • Lagos L, Maruyama F, Nannipieri P, Mora ML, Ogram A, Jorquera MA (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini-review. J Soil Sci Plant Nutr (ahead):0–0. https://doi.org/10.4067/S0718-95162015005000042

  • Lazazzera BA (2000) Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3(2):177–182

    CAS  PubMed  Google Scholar 

  • Li Q, Wu Y, Wang J, Yang B, Chen J, Wu H, Zhang Z, Lu C, Lin W, Wu L (2020) Linking short-chain N-acyl homoserine lactone-mediated quorum sensing and replant disease: a case study of Rehmannia glutinosa. Front Plant Sci 17(11):787

    Google Scholar 

  • Liu YH, Wang ET, Jiao YS, Tian CF, Wang L, Wang ZJ, Guan JJ, Singh RP, Chen WX, Chen WF (2018) Symbiotic characteristics of Bradyrhizobium diazoefficiens USDA 110 mutants associated with shrubby sophora (Sophora flavescens) and soybean (Glycine max). Microbiol Res 214:19–27

    CAS  PubMed  Google Scholar 

  • Ma ZP, Lao YM, Jin H, Lin GH, Cai ZH, Zhou J (2016) Diverse profiles of AI-1 type quorum sensing molecules in cultivable bacteria from the mangrove (Kandelia obovata) rhizosphere environment. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01957

  • Maheshwari NK, Singh RP, Manchanda G, Dubey RC, Maheshwari DK (2021) Sunn Hemp (Crotalaria juncea) nodulating bacteria capable for high antagonistic potential and plant growth promotion attributes. J Microbiol Biotechnol Food Sci 10(3):385–389. https://doi.org/10.15414/jmbfs.2020.10.3.385-389

    Article  CAS  Google Scholar 

  • Majerczyk C, Schneider E, Greenberg EP (2016) Quorum sensing control of type VI secretion factors restricts the proliferation of quorum-sensing mutants. eLife 5:e14712. doi:https://doi.org/10.7554/eLife.14712

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierso LS 3rd (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58(8):2616–2624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  PubMed  Google Scholar 

  • Müller H, Westendorf C, Leitner E et al (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67:468–478

    PubMed  Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol 66:4372–4377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Park SY, Ryu CM, Park SH, Lee JK (2008) The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J Microbiol Biotechnol 18:1518–1521

    CAS  PubMed  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS (1998) Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant-Microbe Interact 11:1078–1084

    CAS  Google Scholar 

  • Prajakta BM, Suvarna PP, Raghvendra SP, Alok RR (2019) Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Appl Sci 1(10):1–1

    CAS  Google Scholar 

  • Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI-and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180(4):815–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Choi HK, Lee CH, Murphy JF, Lee JK, Kloepper JW (2013) Modulation of quorum sensing in acylhomoserine lactone-producing or-degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90–166. Plant Pathol J 29:182

    PubMed  PubMed Central  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    CAS  PubMed  Google Scholar 

  • Shrestha A, Grimm M, Ojiro I, Krumwiede J, Schikora A (2020) Impact of quorum sensing molecules on plant growth and immune system. Front Microbiol 11:1545. https://doi.org/10.3389/fmicb.2020.01545

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RN, Singh RP, Sharma A, Saxena AK (2016a) Modeling of PrnD protein from Pseudomonas fluorescens RajNB11 and its comparative structural analysis with PrnD proteins expressed in Burkholderia and Serratia. Turkish J Biol 40(3):623–633

    CAS  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016b) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 56:14–25. https://doi.org/10.1002/jobm.201500267

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Manchanda G, Li ZF, Rai AR (2017) Insight of proteomics and genomics in environmental bioremediation. In: Bhakta JN (ed) Handbook of research on inventive bioremediation techniques. IGI Global, Hershey. https://doi.org/10.4018/978-1-5225-2325-3

    Chapter  Google Scholar 

  • Singh RP, Manchanda G, Anwar MN, Zhang JJ, Li YZ (2018) Mycorrhiza–helping plants to navigate environmental stresses. Microbes for Climate Resilient Agricultur 13:205–233. https://doi.org/10.1002/9781119276050.ch10

    Article  Google Scholar 

  • Singh RP, Manchanda G, Maurya IK, Maheshwari NK, Tiwari PK et al (2019) Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. Biocatal Agric Biotechnol 17:507–513. doi:https://doi.org/10.1016/j.bcab.2019.01.014

  • Singh RP, Manchanda G, Yang Y, Singh D, Srivastava AK et al (2020) Deciphering the factors for nodulation and Symbiosis of Mesorhizobium associated with Cicer arietinum in Northwest India. Sustainability 12:1–17

    Google Scholar 

  • Sjöblom S, Brader G, Koch G, Palva ET (2006) Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60:1474–1489

    PubMed  Google Scholar 

  • Solomon JM, Lazazzera BA, Grossman AD (1996) Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10(16):2014–2024. https://doi.org/10.1101/gad.10.16.2014

    Article  CAS  PubMed  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R et al (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subhashini DV, Singh RP (2014) Isolation of endophytic actinomycetes from roots and leaves of tobacco (Nicotiana tabacum L.). Annal Plant Pro Sci 22(2):458–459

    Google Scholar 

  • Subhashini DV, Singh RP, Manchanda G (2017) OMICS approaches: tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research. ISBN: 9788171641703. https://books.google.co.in/books?id=vSaLtAEACAAJ

  • Sylvia D, Fuhrmann J, Hartel P, Zuberer D (2005) Principles and applications of soil microbiology. Pearson Education Inc, New Jersey

    Google Scholar 

  • Veliz-Vallejos DF, Kawasaki A, Mathesius U (2020) The presence of plant-associated bacteria alters responses to N-acyl homoserine lactone quorum sensing signals that modulate nodulation in Medicago truncatula. Plant 9:777

    CAS  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017) Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol App Sci 6(3):301–309

    CAS  Google Scholar 

  • Veselova MA, Klein SH, Bass IA et al (2008) Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium pseudomonas chlororaphis 449. Russ J Genet 44:1400

    CAS  Google Scholar 

  • Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525

    CAS  PubMed  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS microbiol revi 25(4):365–404

    CAS  Google Scholar 

  • Williamson LL, Borlee BR, Schloss PD, Guan C, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor. Appl Environ Microbiol 71(10):6335–6344. https://doi.org/10.1128/AEM.71.10.6335-6344.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J (2009) Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 55:210–214

    CAS  PubMed  Google Scholar 

  • Yang SH, Chen WH, Wang ET, Chen WF, Yan J, Han XZ, Tian CF, Sui XH, Singh RP, Jiang GM, Chen WX (2018) Rhizobial biogeography and inoculation application to soybean in four regions across China. J Appl Microbiol 125(3):853–866

    CAS  PubMed  Google Scholar 

  • Yang YJ, Lin W, Singh RP, Xu Q, Chen Z, Yuan Y, Zou P, Li Y, Zhang C (2019) Genomic, transcriptomic and enzymatic insight into lignocellulolytic system of a plant pathogen Dickeya sp. WS52 to digest sweet pepper and tomato stalk. Biomolecules 9(12):753. https://doi.org/10.3390/biom9120753

    Article  CAS  PubMed Central  Google Scholar 

  • Yang Y, Liu L, Singh RP, Meng C, Ma S, Jing C, Li Y, Zhang C (2020a) Nodule and root zone microbiota of salt-tolerant wild soybean in coastal sand and saline-alkali soil. Front Microbiol 11:2178. https://doi.org/10.3389/fmicb.2020.523142

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Singh RP, Song D, Chen Q, Zheng X, Zhang C, Zhang M, Li Y (2020b) Synergistic effect of Pseudomonas putida II-2 and Achromobacter sp. QC36 for the effective biodegradation of the herbicide quinclorac. Ecotoxicol Environ Safety 188:109826

    CAS  PubMed  Google Scholar 

  • Yaoyao E, Yuan J, Yang F et al (2017) PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Expr 7:104

    Google Scholar 

  • Zhang JJ, Yang X, Chen G, de Lajudie P, Singh RP et al (2016) Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China. Plant Soil 410:103–112

    Google Scholar 

  • Zhuang X, Gao J, Ma A, Fu S, Zhuang G (2013) Bioactive molecules in soil ecosystems: masters of the underground. Inter J Mol Sci 14(5):8841–8868. https://doi.org/10.3390/ijms14058841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathi, M., Manchanda, G., Singh, R.P. (2021). Role of Quorum Sensing in the Survival of Rhizospheric Microbes. In: Singh, R.P., Manchanda, G., Bhattacharjee, K., Panosyan, H. (eds) Microbes in Microbial Communities. Springer, Singapore. https://doi.org/10.1007/978-981-16-5617-0_11

Download citation

Publish with us

Policies and ethics