Skip to main content

Significance of Reversal-Resorption Phase in Bone Loss

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders

Abstract

The latest revision of the bone remodeling process has now established that it involves three successive phases: (1) a short initial resorption phase by primary osteoclasts, (2) a longer reversal-resorption phase with intermixed osteoblastic reversal cells and secondary osteoclasts, and (3) a subsequent formation phase. The present chapter focuses on: (1) the histological characteristics of remodeling sites within the reversal-resorption phase, (2) a new definition of the eroded surfaces largely reflecting the reversal-resorption phase, (3) the histological characteristics of eroded surfaces arrested within the reversal-resorption phase, (4) the contribution of a prolonged reversal-resorption phase to the bone loss with age, utilizing cortical porosity as a measure of the bone loss.

The present invited review was completed and submitted to the publisher on 15-Mar-20. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassen NE, Andersen TL, Ploen GG, Soe K, Hauge EM, Harving S, et al. Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs. J Bone Miner Res. 2017 Jul;32(7):1395–405.

    Google Scholar 

  2. Andreasen CM, Delaisse JM, van der Eerden BCJ, van Leeuwen JP, Ding M, Andersen TL. Understanding age-induced cortical porosity in women: the accumulation and coalescence of eroded cavities upon existing intracortical canals is the main contributor. J Bone Miner Res. 2018;33:606–20.

    Article  Google Scholar 

  3. Andreasen CM, Delaisse JM, van der Eerden BCJ, van Leeuwen JPTM, Ding M, Andersen TL. Understanding age-induced cortical porosity in women: is a negative BMU balance in quiescent osteons a major contributor? Bone. 2018;117:70–82.

    Google Scholar 

  4. Jaworski ZF, Meunier P, Frost HM. Observations on two types of resorption cavities in human lamellar cortical bone. Clin Orthop Relat Res. 1972;83:279–85.

    Google Scholar 

  5. Pankovich AM, Simmons DJ, Kulkarni VV. Zonal osteons in cortical bone. Clin Orthop Relat Res. 1974:356–63.

    Google Scholar 

  6. Tappen NC. Three-dimensional studies on resorption spaces and developing osteons. Am J Anat. 1977;149:301–17.

    Article  CAS  Google Scholar 

  7. Maggiano IS, Maggiano CM, Clement JG, Thomas CD, Carter Y, Cooper DM. Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat. 2016;228:719–32.

    Article  Google Scholar 

  8. Andersen TL, Abdelgawad ME, Kristensen HB, Hauge EM, Rolighed L, Bollerslev J, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol. 2013;183:1–12.

    Article  Google Scholar 

  9. Baron R, Magee S, Silverglate A, Broadus A, Lang R. Estimation of trabecular bone resorption by histomorphometry: evidence for a prolonged reversal phase with normal resorption in post-menopausal osteoporosis and coupled increase in primary hyperparathyroidism. Clin Disorders Bone Min Metab. 1983:191–5.

    Google Scholar 

  10. Baron R, Vignery A, Lang R. Reversal phase and osteopenia: defective coupling of resorption to formation in the pathogenesis of osteoporosis. In: Deluca HF, Frost HM, Jee WSS, Johnston CC, Parfitt AM, editors. Osteoporosis: recent advances in pathogenesis and treatment. Baltimore, MD: University Park Press. 1980:311–20.

    Google Scholar 

  11. Jensen PR, Andersen TL, Hauge EM, Bollerslev J, Delaisse JM. A joined role of canopy and reversal cells in bone remodeling – lessons from glucocorticoid-induced osteoporosis. Bone. 2015;73:16–23.

    Article  Google Scholar 

  12. Balena R, Shih MS, Parfitt AM. Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res. 1992;7:1475–82.

    Article  CAS  Google Scholar 

  13. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 2013;28:2–17.

    Article  Google Scholar 

  14. Erben RG, Glosmann M. Histomorphometry in rodents. Methods Mol Biol. 2019;1914:411–35.

    Google Scholar 

  15. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res. 2018;33:298–306.

    Article  CAS  Google Scholar 

  16. Andreasen CM, Ding M, Overgaard S, Bollen P, Andersen TL. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep. Bone. 2015;75:32–9.

    Google Scholar 

  17. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res. 2005;20:177–84.

    Article  CAS  Google Scholar 

  18. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O'Fallon WM, Riggs BL. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res. 1990;5:311–9.

    Article  CAS  Google Scholar 

  19. Frost M, Rahbek ET, Ejersted C, Høilund-Carlsen PF, Bygum A, Thomsen JS et al. Modeling-based bone formation transforms trabeculae to cortical bone in the sclerotic areas in Buschke-Ollendorf syndrome. A case study of two females with LEMD3 variants. Bone. 2020 Jun;135:115313.

    Google Scholar 

  20. Dempster DW, Zhou H, Ruff VA, Melby TE, Alam J, Taylor KA. Longitudinal effects of teriparatide or zoledronic acid on bone modeling- and remodeling-based formation in the SHOTZ study. J Bone Miner Res. 2018;33:627–33.

    Article  CAS  Google Scholar 

  21. Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, et al. Sustained modeling-based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. J Bone Miner Res. 2015;30:1280–9.

    Article  CAS  Google Scholar 

  22. Jee WS, Tian XY, Setterberg RB. Cancellous bone minimodeling-based formation: a Frost, Takahashi legacy. J Musculoskelet Neuronal Interact. 2007;7:232–9.

    CAS  PubMed  Google Scholar 

  23. Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, Garcia-Hernandez PA, et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res. 2008;23:6–16.

    Article  CAS  Google Scholar 

  24. Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, et al. Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84. Bone. 2009;44:113–9.

    Article  CAS  Google Scholar 

  25. Eriksen EF, Melsen F, Sod E, Barton I, Chines A. Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone. 2002;31:620–5.

    Article  CAS  Google Scholar 

  26. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16:1846–53.

    Article  CAS  Google Scholar 

  27. Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I, et al. Effects of long-term denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103:2498–509.

    Article  Google Scholar 

  28. Chavassieux P, Portero-Muzy N, Roux JP, Horlait S, Dempster DW, Wang A et al. Reduction of cortical bone turnover and erosion depth after 2 and 3 years of denosumab: iliac bone histomorphometry in the FREEDOM trial. J Bone Miner Res. 2019 Sep;34(9):1597–608.

    Google Scholar 

  29. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest. 1997;100:1475–80.

    Article  CAS  Google Scholar 

  30. Jensen PR, Andersen TL, Chavassieux PM, Roux JP, Delaisse JM. Why do bisphosphonates compromise bone formation. J Bone Miner Res. 2015;30(Suppl 1).

    Google Scholar 

  31. Erben RG. Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec. 1996;246:39–46.

    Article  CAS  Google Scholar 

  32. Thomsen JS, Jensen MV, Niklassen AS, Ebbesen EN, Bruel A. Age-related changes in vertebral and iliac crest 3D bone microstructure—differences and similarities. Osteoporos Int. 2015;26:219–28.

    Article  CAS  Google Scholar 

  33. Bach-Gansmo FL, Bruel A, Jensen MV, Ebbesen EN, Birkedal H, Thomsen JS. Osteocyte lacunar properties and cortical microstructure in human iliac crest as a function of age and sex. Bone. 2016;91:11–9.

    Google Scholar 

  34. Thomsen JS, Niklassen AS, Ebbesen EN, Bruel A. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone. 2013;57:47–55.

    Article  Google Scholar 

  35. Arnold JS. Focal excessive endosteal resorption in aging and senile osteoporosis. In: Barzel US, editor. Osteoporosis. New York: Grune & Stratton; 1970. p. 80–100.

    Google Scholar 

  36. Keshawarz NM, Recker RR. Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res. 1984;5:223–8.

    Article  CAS  Google Scholar 

  37. Andreasen CM, Bakalova LP, Bruel A, Hauge EM, Kiil BJ, Delaisse JM et al. The generation of enlarged eroded pores upon existing intracortical canals is a major contributor to endocortical trabecularization. Bone. 2020;130:115127.

    Google Scholar 

  38. Thompson DD. Age changes in bone mineralization, cortical thickness, and Haversian canal area. Calcif Tissue Int. 1980;31:5–11.

    Article  CAS  Google Scholar 

  39. Stein MS, Feik SA, Thomas CD, Clement JG, Wark JD. An automated analysis of intracortical porosity in human femoral bone across age. J Bone Miner Res. 1999;14:624–32.

    Article  CAS  Google Scholar 

  40. Thomas CD, Feik SA, Clement JG. Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat. 2006;209:219–30.

    Article  Google Scholar 

  41. Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, et al. Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res. 2001;16:1308–17.

    Article  CAS  Google Scholar 

  42. Lerebours C, Thomas CD, Clement JG, Buenzli PR, Pivonka P. The relationship between porosity and specific surface in human cortical bone is subject specific. Bone. 2015;72:109–17.

    Google Scholar 

  43. Bakalova LP, Andreasen CM, Thomsen JS, Bruel A, Hauge EM, Kiil BJ, et al. Relating intracortical bone mechanics to pore morphology and remodeling characteristics in the human fibula. J Bone Miner Res. 2018;33:2177–85.

    Article  Google Scholar 

  44. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone. 1993;14:681–91.

    Article  CAS  Google Scholar 

  45. Broulik P, Kragstrup J, Mosekilde L, Melsen F. Osteon cross-sectional size in the iliac crest: variation in normals and patients with osteoporosis, hyperparathyroidism, acromegaly, hypothyroidism and treated epilepsia. Acta Pathol Microbiol Immunol Scand A. 1982;90:339–44.

    CAS  PubMed  Google Scholar 

  46. Eriksen EF, Melsen F, Mosekilde L. Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metab Bone Dis Relat Res. 1984;5:235–42.

    Article  CAS  Google Scholar 

  47. Kragstrup J, Melsen F, Mosekilde L. Thickness of lamellae in normal human iliac trabecular bone. Metab Bone Dis Relat Res. 1983;4:291–5.

    Article  CAS  Google Scholar 

  48. Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res. 1978;26:13–7.

    Article  CAS  Google Scholar 

  49. Vedi S, Compston JE, Webb A, Tighe JR. Histomorphometric analysis of dynamic parameters of trabecular bone formation in the iliac crest of normal British subjects. Metab Bone Dis Relat Res. 1983;5:69–74.

    Article  Google Scholar 

  50. Compston JE, Vedi S, Kaptoge S, Seeman E. Bone remodeling rate and remodeling balance are not co-regulated in adulthood: implications for the use of activation frequency as an index of remodeling rate. J Bone Miner Res. 2007;22:1031–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Levin Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andersen, T.L., Delaisse, JM., Thomsen, J.S., Andreasen, C.M. (2022). Significance of Reversal-Resorption Phase in Bone Loss. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics