Skip to main content

Mineralization Impairment Due to Vitamin D Deficiency in Bone Histomorphometry

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders

Abstract

Vitamin D has an essential nutritional role for the regulation of bone metabolism in the skeleton. Serum 25-hydroxyvitaminD (25OHD), as an indicator of vitamin D status, is reportedly beneficial for human bone physiological functions. Clinically, vitamin D deficiency initially induces secondary hyperparathyroidism and impaired bone mineralization. The defects of mineralization result in bone softening, clinically known as osteomalacia. In the histomorphometric quantitative evaluation, disturbance of bone mineralization was diagnosed based on criteria from different stages.

The present invited review was completed and submitted to the publisher on 04-Apr-21. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holick MF. Vitamin D deficiency. NEJM. 2007;357:266–8.

    Article  CAS  Google Scholar 

  2. Domarus C, et al. How much Vitamin D do we need for skeletal health? Clin Orthop Relat Res. 2011;469:3127–33.

    Article  Google Scholar 

  3. Hcolic MF. Vitamin D and sunlight: strategies for cancer prevention and other health benefits. Clin J Am Soc Nephrol. 2008;3:1548–54.

    Article  Google Scholar 

  4. Lips P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res. 2007;22:1668–71.

    Article  CAS  Google Scholar 

  5. Chalmers J, et al. Osteomalacia -a common disease in elderly women. J Bone Joint Surg Br. 1967;49:403–23.

    Article  CAS  Google Scholar 

  6. McKenna MJ, et al. Osteomalacia and osteoporosis: evaluation of a diagnostic index. J Clin Pathol. 1983;36:245–52.

    Article  CAS  Google Scholar 

  7. Frost HM. Tetracycline based histological analysis of bone remodeling. Calcif Tissue Res. 1969;3:211–37.

    Google Scholar 

  8. Fuchs RK, et al. An in situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared spectroscopy. Matrix Biol. 2008;27:34–41.

    Article  CAS  Google Scholar 

  9. Bovin G, et al. Influence of remodeling on the mineralization of bone tissue. Osteoporosis Int. 2009;20:1023–6.

    Article  Google Scholar 

  10. Recker RR. Bone histomorphometry in clinical practice. Rheum Dis Clin N Am. 1994;20:609–27.

    Article  CAS  Google Scholar 

  11. Villanueva AR. A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams. Stain Technol. 1989;64:129–38.

    Article  CAS  Google Scholar 

  12. Villanueva AR. A bone stain for osteoid seams in fresh, unembedded, mineralized bone. Stain Technol. 1974;1:1–8.

    Article  Google Scholar 

  13. Parfitt AM. The physiologic and clinical significance of bone histomorphometric data. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. CRC Press: Boca Raton, FL; 1983. p. 143–244.

    Google Scholar 

  14. Dempster DW, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28:2–17.

    Google Scholar 

  15. Rao DS, et al. Practical approach to bone biopsy. In: Recker R, editor. Bone histomorphometry: techniques and interpretations. Boca Raton, FL: CRC Press; 1983. p. 3–11.

    Google Scholar 

  16. Bhan A, et al. Osteomalacia as a result of vitamin D deficiency. Endocrinol Metab Clin North Am. 2010;39:321–31.

    Google Scholar 

  17. Parfitt AM. Osteomalacia and related disorders. In: Avioli LV, Krane SM, editors. Metabolic bone disease, 3rd ed. San Diego, CA: Academic; 1998. p. 345–86.

    Google Scholar 

  18. Parfitt AM. Vitamin D and the pathogenesis of rickets and osteomalacia. In: Feldman D, Glorieux FH, Pike W, editors. Vitamin D. San Diego: Academic; 1997. p. 645–62.

    Google Scholar 

  19. Bhan A, et al. Bone histomorphometry in the evaluation of osteomalacia. Bone Rep. 2018;8:125–34.

    Article  Google Scholar 

  20. Parfitt AM, et al. The mineralization index: a new approach to the histomorphometric appraisal of osteomalacia. Bone. 2004;35:320–5.

    Article  CAS  Google Scholar 

  21. Basha B, Rao DS, Han ZH, Parfitt AM. Osteomalacia due to vitamin D depletion: a neglected consequence of intestinal malabsorption. Am J Med. 2000;108:296.

    Article  CAS  Google Scholar 

  22. Priemel M, et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res. 2010;25:305–12.

    Article  CAS  Google Scholar 

  23. Heidari B, et al. Seasonal variations in serum vitamin D according to age and sex. Caspian J Intern Med. 2012;3:535–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Need AG, et al. Seasonal change in osteoid thickness and mineralization lag time in ambulant patients. J Bone Miner Res. 2007;22:757–61.

    Article  CAS  Google Scholar 

  25. Parfitt AM. Effects of ethnicity and age or menopause on osteoclast function, bone mineralization and osteoid accumulation in iliac bone. JBMR. 1997;12:1864–73.

    Article  CAS  Google Scholar 

  26. Lips P. Vitamin D related disorders Primer on the metabolic bone diseases and disorders of mineral metabolism seven edition. 2008;329–35.

    Google Scholar 

  27. Matsumoto T, et al. Comparison of the effects of eldecalcitol and alfacalcidol on bone and calcium metabolism. J Steroid Biochem Mol Biol. 2010;121:261–4.

    Article  CAS  Google Scholar 

  28. Shiraishi A, et al. Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Miner Res. 2000;15:770–9.

    Article  CAS  Google Scholar 

  29. Smith SY, et al. Eldecaitol, a vitamin D analog, reduces bone turnover and increases trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2013;57:116–22.

    Article  CAS  Google Scholar 

  30. Li M, et al. J musculo Neuron Interact. 2004;4:22–32.

    Google Scholar 

  31. Frritas PHL, et al. Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats. Bone. 2011;49:335–42.

    Article  Google Scholar 

  32. Hikata T, et al. Histomorphometric analysis of minimodeling in the vertebrae in postmenopausal patients treated with anti-osteoporotic agents. Bone Rep. 2016;5:286–91.

    Google Scholar 

  33. Doppelt SH. Vitamin D, rickets, and osteomalacia. Orthop Clin North Am. 1984;15:671–86.

    Article  CAS  Google Scholar 

  34. Francis RM, et al. Osteomalacia Bailleres. Clin Endvrinol Metab. 1997;11:145–63.

    CAS  Google Scholar 

  35. Bingham CT. Noninvasive testing in the diagnosis of osteomalacia. Am J Med. 1993;95:519–23.

    Article  CAS  Google Scholar 

  36. Gifre L, et al. Osteomalacia revisited: a report on 28 cases. Clin Rheumatol. 2011;30:639–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamamoto, N., Takahashi, Y., Shimakura, T., Takahashi, H.E. (2022). Mineralization Impairment Due to Vitamin D Deficiency in Bone Histomorphometry. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics