Skip to main content

Mathematical Modeling and Inverse Problem Approaches for Functional Clothing Design Based on Thermal Mechanism

  • Conference paper
  • First Online:
Proceedings of the Forum "Math-for-Industry" 2018

Part of the book series: Mathematics for Industry ((MFI,volume 35))

  • 288 Accesses

Abstract

Functional clothing design is of paramount importance in the clothing industry, and the thermal comfort clothing (TCC) and thermal protective clothing (TPC) are the two kinds of functional clothing satisfying the thermal comfort and thermal safety, respectively. It is therefore important to reveal heat and moisture transfer characteristics in the system of human body–clothing–environment, which directly determine thermal comfort level or thermal safety level of human body. Based on the thermal mechanism such as heat/moisture transfer in porous fabric, we present some parabolic equation models or space-fractional models, respectively. Hence, we formulate inverse problems of textile material determination (in abbreviation, IPTMD) for the TCC/TPC design. Adopting the idea of least squares method or regularization method and Bayesian statistical inference method, we formulate the IPTMD into a function minimization problem. Combined with the numerical methods for PDEs, some numerical algorithms of approximated solutions for the IPTMD are reviewed in the sense of the deterministic and stochastic structure, respectively. Theoretical study and numerical simulation results validate the formulation of the IPTMD and demonstrate the effectiveness of the proposed numerical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bowles M, Agueh M (2015) Weak solutions to a fractional Fokker-Planck equation via splitting and Wasserstein gradient flow. Appl Math Lett 42:30–35

    Article  MathSciNet  MATH  Google Scholar 

  • Chen YB, Xu DH, Zhou XH (2011) An inverse problem of type determination for bilayer textile materials under low temperature. In: Symposium on Proceedings of bioengineering and information society, Text, pp 1336–1343

    Google Scholar 

  • Chitrphiromstri P, Kuznetsov AV (2005) Modeling heat and moisture transfer in firefighter protective clothing during flash fire exposure. Heat Mass Transfer 41:206–215

    Google Scholar 

  • Du N, Fan JT, Wu HJ, Sun WW (2009) Optimal porosity distribution of fibrous insulation. Int J Heat Mass Trans 52:4350–4357

    Article  MATH  Google Scholar 

  • Du Q, Gunzburger M, Lehoucq RB, Zhou K (2012) Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev 54:667–696

    Article  MathSciNet  MATH  Google Scholar 

  • Elgafy A, Mishra S (2014) A heat transfer model for incorporating carbon foam fabrics in firefighter’s garment. Heat Mass Transfer 50:545–557

    Article  Google Scholar 

  • Engl HW, Hanke M, Neubaer A (1998) Regularization of inverse problems. Kluwer Academic Publishers, London

    Google Scholar 

  • Ervin V, Roop J (2006) Variational formulation for the stationary fractional advection dispersion equation. Numer Meth Part D E 22:558–576

    Article  MathSciNet  MATH  Google Scholar 

  • Fan JT, Wei XH (2002) Heat and moisture transfer through fibrous insulation with phase change and mobile condensates. Int J Heat Mass Transfer 19:4045–4055

    Article  MATH  Google Scholar 

  • Fan JT, Luo ZX, Li Y (2000) Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int J Heat Mass Transfer 43:2989–3000

    Article  MATH  Google Scholar 

  • Fan JT, Cheng X, Wen X, Sun WW (2004) An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results. Int J Heat Mass Transfer 47:2343–2352

    Article  Google Scholar 

  • Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall Inc

    Google Scholar 

  • Ge MB, Yu Y, Xu DH (2017) Textile porosity determination based on a nonlinear heat and moisture transfer model. Appl Anal 96:1681–1697

    Article  MathSciNet  MATH  Google Scholar 

  • Henriques FC, Moritz AR (1947) Studies of thermal injuries I: the conduction of heat to and through skin and the temperatures attained therein. Theor Exp Invest Am J Pathol 23:531–549

    Google Scholar 

  • Hua YX, Yu XH (2013) On the ground state solution for a critical fractional Laplacian equation. Nonl Anal 87:116–125

    Article  MathSciNet  MATH  Google Scholar 

  • Huang J (2008) Cloting comfort. Scienc Press, Beijing

    Google Scholar 

  • Jiang XY, Xu DH, Zhang QF (2017) A modified regularized algorithm for a semilinear space-fractional backward diffusion problem. Math Method Appl Sci 40:5996–6006

    Article  MathSciNet  MATH  Google Scholar 

  • Jin BT, Lazarov R, Pasciak J, Rundell W (2015) Variational formulation of problems involving fractional order differential operators. Math Comput 84:2665–2700

    Article  MathSciNet  MATH  Google Scholar 

  • Klafter J, Sokolov IM (2005) Anomalous diffusion spreads its wings. Phys World 8:29–32

    Article  Google Scholar 

  • Li Y, Li FZ, Liu YX, Luo ZX (2004) An integrated model for simulating interactive thermal processes in human-clothing system. J Therm Biol 29:567–575

    Article  Google Scholar 

  • Liu F, Zhuang P, Anh V, Tuner I (2005) A fractional-order implicit difference approximation for the space-time fractional diffusion equation. Anziam J 47:C48–C68

    Article  MathSciNet  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A: Math Gen 37:R161–R208

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J, Sokolov IM (1998) Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended. Phys Rev E 58:1621–1632

    Article  Google Scholar 

  • Pan B, Xu DH, Xu YH, Yu Y (2017) TV-like regularization for backward parabolic problems. Math Meth Appl Sci 40:957–969

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fract differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Song GW, Chitrphiromstri P, Ding D (2008) Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergo 14:89–106

    Article  Google Scholar 

  • Stoll AM, Chianta MA (1969) Method and rating system for evaluation of thermal protection. Aerosp Med 11:1232–1238

    Google Scholar 

  • Stuart AM (2010) Inverse problems: a Beyesian perspective. Acta Numer 19:451–559

    Article  MathSciNet  MATH  Google Scholar 

  • Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213:205–213

    Article  MathSciNet  MATH  Google Scholar 

  • Wu HH, Fan JT (2008) Study of heat and moisture transfer within multi-layer clothing assemblies consisting different types of battings. J Therm Sci 47:641–647

    Article  Google Scholar 

  • Xu DH, Cheng JX, Chen YB, Ge MB (2011) An inverse problem of thickness design for bilayer textile materials under low temperature. J Phys: Conf Ser 290:12018

    Google Scholar 

  • Xu DH, Cui P (2016) Simultaneous determination of thickness, thermal conductivity and porosity in textile material design J Inverse Ill-pose 24:59–66

    Google Scholar 

  • Xu DH, Wen L (2014) An inverse problem of textile porosity determination Chin Ann Math 35(A):129–144

    Google Scholar 

  • Xu DH (2014) Mathemtical modeling of heat and moisture transfer within textiles and corresponding inverse problems of textile material design. Science Press, Beijing

    Google Scholar 

  • Xu DH (2014) Inverse problem of textile material design based on clothing heat-moisture comfort. Appl Anal 93:2426–2439

    Article  MathSciNet  MATH  Google Scholar 

  • Xu DH, Ge MB (2012) Thickness determination in textile material design: dynamic modeling and numerial algorithms. Inverse Probl 28:35011–35032

    Article  Google Scholar 

  • Xu DH, Chen YB, Zhou XH (2010) An inverse problem of thickness design for single layer textile material under low temperature. J Math Ind 2:582–590

    Google Scholar 

  • Xu DH, Chen RL, Ge MB (2012) Inverse problems of textile material design based on comfort of clothing. Commun Appl Comput Math 3:332–341

    MathSciNet  MATH  Google Scholar 

  • Xu DH, Chen YB, Zhou XH (2013) Type design for textile materials under low temperature: modeling, numerical algorithm and simulation. Int J Heat Mass Transfer 60:582–590

    Article  Google Scholar 

  • Xu DH, Wen L, Xu BX (2014) An inverse problem of bilayer textile thickness determination in dynamic heat and moisture transfer. Appl Anal 93:445–465

    Article  MathSciNet  MATH  Google Scholar 

  • Xu YH, Xu DH, Zhang LP, Zhou XH (2015) A new inverse problem for the determination of textile fabrics. Inverse Probl Sci Eng 23:635–650

    Article  MathSciNet  MATH  Google Scholar 

  • Xu DH, He YG, Yu Y, Zhang QF (2018) Multiple parameter determination in textile material design: a Bayesian inference approach based on simulation. Math Comput Simul 151:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Yang GF, Yamamoto M, Cheng J (2008) Heat transfer in composite materials with Stefan-Boltzmann interface conditions. Math Meth Appl Sci 31:1297–1314

    Article  MathSciNet  MATH  Google Scholar 

  • Ye C, Huang HX, Fan JT, Sun WW (2008) Numerical study of heat and moisture transfer in textile materials by a finite volume method. Commun Comput Phys 4:929–948

    MATH  Google Scholar 

  • Yosida K (1999) Functional analysis (sixth version). Springer, Beijing World Publishing Corporation, Beijing

    Google Scholar 

  • Yu Y, Xu DH (2015) On the inverse problems of thermal conductivity determination in nonlinear heat and moisture transfer model within textiles. Appl Math Comput 264:284–299

    MathSciNet  MATH  Google Scholar 

  • Yu Y, Xu DH, Hon YC (2015) Reconstruction of inaccessible boundary value in a sideways parabolic problem with variable coefficients. Eng Anal Bound Elem 61:78–90

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Y, Xu DH, Hon YC (2015) Numerical algorithms for a sideways parabolic problem with variable coefficients. Appl Anal 95:874–901

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Y, Xu DH, Steve Xu YZ, Zhang QF (2016) Variational formulation for a fractional heat transfer model in firefighter protective clothing. Appl Math Model. 40:9675–9691

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 11871435 and 11471287). The work was elected as a plenary talk on the Forum “Math-for-Industry” 2018– Big Data Analysis, AI, Fintech, Math in Finances and Economics, November 17–21, 2018, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, D., Li, T. (2021). Mathematical Modeling and Inverse Problem Approaches for Functional Clothing Design Based on Thermal Mechanism. In: Cheng, J., Dinghua, X., Saeki, O., Shirai, T. (eds) Proceedings of the Forum "Math-for-Industry" 2018. Mathematics for Industry, vol 35. Springer, Singapore. https://doi.org/10.1007/978-981-16-5576-0_4

Download citation

Publish with us

Policies and ethics