Skip to main content

Biomimetic Approaches Towards Device-Tissue Integration

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

The application of biomimetic technologies to neural interfaces seeks to improve the long-term safety and performance of implantable systems. These biomimetic approaches encompass methods that alter the biological environment through mechanical, topographical and biological approaches. This chapter examines recent developments in bioinspired soft and functional materials designed for neural interfaces and their application to neuroprosthetic devices. Further approaches to engineering the neural interface, such as the application of tissue engineering and genetic engineering technologies, including their role in the development of next-generation neuroprosthetic devices are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three Dimensional

Ascl1:

Achaete-Scute Homolog 1

AV8:

Adeno-Associated Viral Vector

AVV2:

Adeno-Associated Viral Vector

BAC:

Bacterial Artificial Chromosome

Brn2:

Bearskin 2

ChR2:

Channelrhodopsin2

CHs:

Conducting Hydrogels

CNS:

Central Nervous System

CPs:

Conducting Polymers

DCX+ :

Doublecortin

Dlx2:

Distal-Less Homeobox 2

ECM:

Extracellular Matrix

EL222:

Erythrobacter Litoralis Protein

GAGs:

Glycosaminoglycans

GABA:

Gamma-Aminobutyric Acid

GFAP:

Anti-Glial Fibrillary Acidic Protein

GFP:

Green Fluorescent Protein

LED:

Light Emitting Diode

Myt1l:

Myelin Transcription Factor 1-Like

NeuroD1:

Neuronal Differentiation 1

Neurog2:

Neurogenin-2

Pax6:

Paired Box Protein-6

PBS:

Phosphate-Buffered Saline Solution

Pt:

Platinum

References

  1. Wang, M., et al.: Nanotechnology and nanomaterials for improving neural interfaces. Adv. Funct. Mater. 28, 1700905 (2018)

    Google Scholar 

  2. Chaudhary, U., Birbaumer, N., Ramos-Murguialday, A.: Brain–computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12, 513 (2016)

    Google Scholar 

  3. Vallejo-Giraldo, C., et al.: Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine. 11, 2547–2563 (2016)

    Google Scholar 

  4. Sofroniew, M.V.: Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009)

    Google Scholar 

  5. Hamzavi, N., Tsang, W. & Shim, V.: Nonlinear elastic brain tissue model for neural probe-tissue mechanical interaction. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1119–1122. IEEE (2013)

    Google Scholar 

  6. Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)

    Google Scholar 

  7. Palchesko, R.N., Zhang, L., Sun, Y., Feinberg, A.W.: Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One. 7, e51499 (2012)

    Google Scholar 

  8. Kozai, T.D.Y., et al.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065 (2012)

    Google Scholar 

  9. McClain, M.A., et al.: Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed. Microdevices. 13, 361–373 (2011)

    Google Scholar 

  10. Heo, D.N., et al.: Flexible and highly biocompatible nanofiber-based electrodes for neural surface interfacing. ACS Nano. 11, 2961–2971 (2017)

    Google Scholar 

  11. Yu, Z., et al.: Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma. 26, 1135–1145 (2009)

    Google Scholar 

  12. Aregueta-Robles, U.A., Woolley, A.J., Poole-Warren, L.A., Lovell, N.H., Green, R.A.: Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, 15 (2014)

    Google Scholar 

  13. Goding, J., Gilmour, A., Martens, P., Poole-Warren, L., Green, R.: Interpenetrating conducting hydrogel materials for neural interfacing electrodes. Adv. Healthc. Mater. 6, 1601177 (2017)

    Google Scholar 

  14. Green, R.A., et al.: Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Macromol. Biosci. 12, 494–501 (2012)

    Google Scholar 

  15. Boehler, C., Stieglitz, T., Asplund, M.: Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials. 67, 346–353 (2015)

    Google Scholar 

  16. Yiannakou, C., et al.: Cell patterning via laser micro/nano structured silicon surfaces. Biofabrication. 9, 025024 (2017)

    Google Scholar 

  17. Chung, C.-K., Tseng, S.-F., Hsiao, W.-T., Chiang, D., Lin, W.-C.: Laser micromachining of PEDOT: PSS/Graphene thin films by using beam shaping technology. J Laser Micro/Nanoeng. 11, 395–399 (2016)

    Google Scholar 

  18. Bass, R.B., Clark, W.W., Zhang, J.Z., Lichtenberger, A.W.: Use of a focused ion beam for characterizing SIS circuits. IEEE Trans. Appl. Supercond. 11, 92–94 (2001)

    Google Scholar 

  19. Hof, L., Guo, X., Seo, M., Wüthrich, R., Greener, J.: Glass imprint templates by spark assisted chemical engraving for microfabrication by hot embossing. Micromachines. 8, 29 (2017)

    Google Scholar 

  20. Hoshino, T., Miyazako, H., Nakayama, A., Wagatsuma, A., Mabuchi, K.: Electron beam induced fine virtual electrode for mechanical strain microscopy of living cell. Sensors Actuators B Chem. 236, 659–667 (2016)

    Google Scholar 

  21. Chapman, C.A., et al.: Nanoporous gold biointerfaces: modifying nanostructure to control neural cell coverage and enhance electrophysiological recording performance. Adv. Funct. Mater. 27, 1604631 (2017)

    Google Scholar 

  22. Turner, A., et al.: Attachment of astroglial cells to microfabricated pillar arrays of different geometries. J. Biomed. Mater. Res. 51, 430–441 (2000)

    Google Scholar 

  23. Qi, L., et al.: The effects of topographical patterns and sizes on neural stem cell behavior. PLoS One. 8, e59022 (2013)

    Google Scholar 

  24. Richardson-Burns, S.M., et al.: Polymerization of the conducting polymer poly (3, 4-ethylenedioxythiophene)(PEDOT) around living neural cells. Biomaterials. 28, 1539–1552 (2007)

    Google Scholar 

  25. Yang, J., Martin, D.C.: Microporous conducting polymers on neural microelectrode arrays: II. Physical characterization. Sensors Actuators A Phys. 113, 204–211 (2004)

    Google Scholar 

  26. Abidian, M.R., Kim, D.H., Martin, D.C.: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18, 405–409 (2006)

    Google Scholar 

  27. HajjHassan, M., Chodavarapu, V., Musallam, S.: NeuroMEMS: neural probe microtechnologies. Sensors. 8, 6704–6726 (2008)

    Google Scholar 

  28. Uppalapati, D., Boyd, B.J., Garg, S., Travas-Sejdic, J., Svirskis, D.: Conducting polymers with defined micro-or nanostructures for drug delivery. Biomaterials. 111, 149–162 (2016)

    Google Scholar 

  29. Kotov, N.A., et al.: Nanomaterials for neural interfaces. Adv. Mater. 21, 3970–4004 (2009)

    Google Scholar 

  30. Pancrazio, J.J.: Neural interfaces at the nanoscale. Nanomedicine. 3, 823–830 (2008)

    Google Scholar 

  31. Cui, X., Hetke, J.F., Wiler, J.A., Anderson, D.J., Martin, D.C.: Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sensors Actuators A Phys. 93, 8–18 (2001)

    Google Scholar 

  32. Biggs, M.J.P., Richards, R.G., Dalby, M.J.: Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine. 6, 619–633 (2010)

    Google Scholar 

  33. Ballester-Beltrán, J., Biggs, M.J., Dalby, M.J., Salmeron-Sanchez, M., Leal-Egaña, A.: Sensing the difference: the influence of anisotropic cues on cell behavior. Front. Mater. 2, 39 (2015)

    Google Scholar 

  34. Yang, X., et al.: Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019)

    Google Scholar 

  35. Zanganeh, S., et al.: Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes. Anal. Chim. Acta. 938, 72–81 (2016)

    Google Scholar 

  36. Pacelli, S., et al.: Nanodiamond-based injectable hydrogel for sustained growth factor release: preparation, characterization and in vitro analysis. Acta Biomater. 58, 479–491 (2017)

    Google Scholar 

  37. Collazos-Castro, J.E., Hernández-Labrado, G.R., Polo, J.L., García-Rama, C.: N-Cadherin-and L1-functionalised conducting polymers for synergistic stimulation and guidance of neural cell growth. Biomaterials. 34, 3603–3617 (2013)

    Google Scholar 

  38. Povlich, L.K., et al.: Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3, 4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochimica et Biophysica Acta (BBA)-General Sub. 1830, 4288–4293 (2013)

    Google Scholar 

  39. Park, S.J., et al.: Functional nerve cuff electrode with controllable anti-inflammatory drug loading and release by biodegradable nanofibers and hydrogel deposition. Sensors Actuators B Chem. 215, 133–141 (2015)

    Google Scholar 

  40. Boehler, C., et al.: Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials. 129, 176–187 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.019

    Article  Google Scholar 

  41. Catt, K., Li, H., Hoang, V., Beard, R., Cui, X.T.: Self-powered therapeutic release from conducting polymer/graphene oxide films on magnesium. Nanomedicine. 14, 2495–2503 (2018)

    Google Scholar 

  42. Castagnola, E. et al.: Nanostructured microsphere coated with living cells and tethered with low-stiffness wire: a possible solution to brain tissue reactions. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 390–393. IEEE (2015)

    Google Scholar 

  43. Yue, Z., Moulton, S.E., Cook, M., O’Leary, S., Wallace, G.G.: Controlled delivery for neuro-bionic devices. Adv. Drug Deliv. Rev. 65, 559–569 (2013). https://doi.org/10.1016/j.addr.2012.06.002

    Article  Google Scholar 

  44. Weaver, C.L., LaRosa, J.M., Luo, X., Cui, X.T.: Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 8, 1834–1843 (2014)

    Google Scholar 

  45. Boehler, C. et al.: In: Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. https://doi.org/10.3389/conf.FBIOE.2016.01.01475. FBIOE

  46. Jian, W.-H., et al.: Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials. 174, 17–30 (2018)

    Google Scholar 

  47. Stevens, M.M., George, J.H.J.S.: Exploring and engineering the cell surface interface. Science. 310, 1135–1138 (2005)

    Google Scholar 

  48. Song, I., Dityatev, A.J.B.: Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136, 101–108 (2018)

    Google Scholar 

  49. Righi, M., et al.: Peptide-based coatings for flexible implantable neural interfaces. Sci. Rep. 8, 502 (2018)

    Google Scholar 

  50. Rodda, A.E., Meagher, L., Nisbet, D.R., Forsythe, J.S.: Specific control of cell–material interactions: targeting cell receptors using ligand-functionalized polymer substrates. Prog. Polym. Sci. 39, 1312–1347 (2014)

    Google Scholar 

  51. Kim, S., et al.: Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomater. 80, 258–268 (2018). https://doi.org/10.1016/j.actbio.2018.09.035

    Article  Google Scholar 

  52. Mantione, D., et al.: Poly (3, 4-ethylenedioxythiophene): GlycosAminoGlycan aqueous dispersions: toward electrically conductive bioactive materials for neural. Interfaces. 16, 1227–1238 (2016)

    Google Scholar 

  53. Green, R.A., Baek, S., Poole-Warren, L.A., Martens, P.J.: Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 11, 014107 (2010)

    Google Scholar 

  54. Frantz, C., Stewart, K.M., Weaver, V.M.: The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010)

    Google Scholar 

  55. Xiao, Y., Li, C.M., Wang, S., Shi, J., Ooi, C.P.: Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity. J. Biomed. Mater. Res. A. 92, 766–772 (2010)

    Google Scholar 

  56. Wan, A.M.-D., et al.: 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B. 3, 5040–5048 (2015)

    Google Scholar 

  57. Baek, P., Voorhaar, L., Barker, D., Travas-Sejdic, J.: Molecular approach to conjugated polymers with biomimetic properties. Acc. Chem. Res. 51, 1581–1589 (2018)

    Google Scholar 

  58. Bhagwat, N., Murray, R.E., Shah, S.I., Kiick, K.L., Martin, D.C.: Biofunctionalization of PEDOT films with laminin-derived peptides. Acta Biomater. 41, 235–246 (2016)

    Google Scholar 

  59. Cui, X., et al.: Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56, 261–272 (2001)

    Google Scholar 

  60. Xiao, Y., Martin, D.C., Cui, X., Shenai, M.: Surface modification of neural probes with conducting polymer poly (hydroxymethylated-3, 4-ethylenedioxythiophene) and its biocompatibility. Appl. Biochem. Biotechnol. 128, 117–129 (2006)

    Google Scholar 

  61. Green, R.A., Lovell, N.H., Poole-Warren, L.A.: Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomater. 6, 63–71 (2010)

    Google Scholar 

  62. Green, R.A., Lovell, N.H., Poole-Warren, L.A.: Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials. 30, 3637–3644 (2009)

    Google Scholar 

  63. Eles, J.R., et al.: Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials. 113, 279–292 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.054

    Article  Google Scholar 

  64. Trowbridge, J.M., Gallo, R.L.: Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology. 12, 117R–125R (2002)

    Google Scholar 

  65. Asplund, M., et al.: Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 045009 (2009)

    Google Scholar 

  66. Cheong, G.M., et al.: Conductive hydrogels with tailored bioactivity for implantable electrode coatings. Acta Biomater. 10, 1216–1226 (2014)

    Google Scholar 

  67. Papy-Garcia, D., et al.: Glycosaminoglycans, protein aggregation and neurodegeneration. Curr. Protein Pept. Sci. 12, 258–268 (2011)

    Google Scholar 

  68. Asplund, M., von Holst, H., Inganäs, O.: Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases. 3, 83–93 (2008)

    Google Scholar 

  69. Wang, M., et al.: Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf. B: Biointerfaces. 150, 175–182 (2017)

    Google Scholar 

  70. Wang, M., et al.: A new avenue to the synthesis of GAG-mimicking polymers highly promoting neural differentiation of embryonic stem cells. Chem. Commun. 51, 15434–15437 (2015)

    Google Scholar 

  71. Mehanna, A., et al.: Polysialic acid glycomimetic promotes functional recovery and plasticity after spinal cord injury in mice. Mol. Ther. 18, 34–43 (2010)

    Google Scholar 

  72. Winter, B. M. et al.: Control of cell fate and excitability at the neural electrode interface: Genetic reprogramming and optical induction. In: 2017 IEEE Life Sciences Conference (LSC), pp. 157–161. IEEE (2017). https://doi.org/10.1109/LSC.2017.8268167

  73. Hong, G., Lieber, C.M.: Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019)

    Google Scholar 

  74. Rivnay, J., Wang, H., Fenno, L., Deisseroth, K., Malliaras, G.G.: Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017)

    Google Scholar 

  75. Capadona, J.R., Shoffstall, A.J., Pancrazio, J.J.: Neuron-like neural probes. Nat. Mater. 18, 429–431 (2019)

    Google Scholar 

  76. Rajasethupathy, P., Ferenczi, E., Deisseroth, K.J.C.: Targeting neural circuits. Cell. 165, 524–534 (2016)

    Google Scholar 

  77. Green, R.A., Lovell, N.H., Wallace, G.G., Poole-Warren, L.A.: Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials. 29, 3393–3399 (2008)

    Google Scholar 

  78. Ochiai, H., Shibata, H., Sawa, Y., Katoh, T.: “Living electrode” as a long-lived photoconverter for biophotolysis of water. Proc. Natl. Acad. Sci. U. S. A. 77, 2442–2444 (1980). https://doi.org/10.1073/pnas.77.5.2442

    Article  Google Scholar 

  79. Ouyang, L., Shaw, C.L., Kuo, C.-c., Griffin, A.L., Martin, D.C.: In vivo polymerization of poly (3, 4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. J. Neural Eng. 11, 026005 (2014)

    Google Scholar 

  80. Goding, J.A., Gilmour, A.D., Aregueta-Robles, U.A., Hasan, E.A., Green, R.A.: Living bioelectronics: strategies for developing an effective long-term implant with functional neural connections. Adv. Funct. Mater. 28, 1702969 (2018)

    Google Scholar 

  81. Aregueta-Robles, U.A., Martens, P.J., Poole-Warren, L.A., Green, R.A.: Tailoring 3D hydrogel systems for neuronal encapsulation in living electrodes. J. Polym. Sci. B Polym. Phys. 56, 273–287 (2018)

    Google Scholar 

  82. Green, R. A. et al.: Living electrodes: tissue engineering the neural interface. Conference proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference 2013, pp. 6957–6960, https://doi.org/10.1109/embc.2013.6611158 (2013)

  83. Liu, Y., et al.: Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 4, 50 (2018)

    Google Scholar 

  84. Cai, L., Dewi, R.E., Heilshorn, S.C.: Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv. Funct. Mater. 25, 1344–1351 (2015)

    Google Scholar 

  85. Serruya, M.D., et al.: Engineered axonal tracts as “living electrodes” for synaptic-based modulation of neural circuitry. Adv. Funct. Mater. 28, 1701183 (2018)

    Google Scholar 

  86. Adewole, D.O., Serruya, M.D., Wolf, J.A., Cullen, D.K.: Bioactive neuroelectronic interfaces. Front. Neurosci. 13, 269 (2019)

    Google Scholar 

  87. Li, H., Nguyen, V. H. & Zhang, H.: {Nature Inspired Conceptual Design of a Micro Neural Probe for Deep Brain Stimulation}. In: International Conference on Sustainable Design and Manufacturing, pp. 31–40. Springer (2018)

    Google Scholar 

  88. Won, S.M., et al.: Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30, 1800534 (2018)

    Google Scholar 

  89. Shoffstall, A.J., Capadona, J.R.J.C.: Bioinspired materials and systems for neural interfacing. Curr Opin Biomed Eng. 6, 110–119 (2018)

    Google Scholar 

  90. Tian, B., et al.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012). https://doi.org/10.1038/nmat3404

    Article  Google Scholar 

  91. de Mena, L., Rizk, P., Rincon-Limas, D.E.: Bringing light to transcription: the optogenetics repertoire. Front. Genet. 9, 518–518 (2018). https://doi.org/10.3389/fgene.2018.00518

    Article  Google Scholar 

  92. Vierbuchen, T., Wernig, M.J.: Molecular roadblocks for cellular reprogramming. Mol. Cell. 47, 827–838 (2012)

    Google Scholar 

  93. Meas, S.J., Zhang, C.L., Dabdoub, A.: Reprogramming glia into neurons in the peripheral auditory system as a solution for sensorineural hearing loss: lessons from the central nervous system. Front. Mol. Neurosci. 11, 77 (2018). https://doi.org/10.3389/fnmol.2018.00077

    Article  Google Scholar 

  94. Chouchane, M., et al.: Lineage reprogramming of astroglial cells from different origins into distinct neuronal subtypes. Stem Cell Rep. 9, 162–176 (2017)

    Google Scholar 

  95. Winter, B., Daniels, S., Salatino, J., Purcell, E.J.M.: Genetic modulation at the neural microelectrode interface: methods and applications. Micromachines. 9, 476 (2018)

    Google Scholar 

  96. Pinyon, J.L., et al.: Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci. Transl. Med. 6, 233ra254 (2014). https://doi.org/10.1126/scitranslmed.3008177

    Article  Google Scholar 

  97. Zhao, S., et al.: Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods. 8, 745–752 (2011)

    Google Scholar 

  98. Wang, L., Huang, K., Zhong, C., Wang, L., Lu, Y.J.: Fabrication and modification of implantable optrode arrays for in vivo optogenetic applications. Biophys. Rep. 4, 82–93 (2018)

    Google Scholar 

  99. Goncalves, S.B., et al.: LED optrode with integrated temperature sensing for optogenetics. Micromachines. 9, 473 (2018)

    Google Scholar 

  100. Khan, W., Setien, M., Purcell, E., Li, W.: Micro-reflector integrated multichannel μLED optogenetic neurostimulator with enhanced intensity. Front. Mech. Eng. 4 (2018). https://doi.org/10.3389/fmech.2018.00017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rylie Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vallejo-Giraldo, C., Genta, M., Goding, J., Green, R. (2023). Biomimetic Approaches Towards Device-Tissue Integration. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_97

Download citation

Publish with us

Policies and ethics