Skip to main content

EEG-Based Machine Learning: Theory and Applications

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Electroencephalography is a widely used clinical and research method to record and monitor the brain’s electrical activity – the electroencephalogram (EEG). Machine learning algorithms have been developed to extract information from the EEG to help in the diagnosis of several disorders (e.g., epilepsy, Alzheimer’s disease, and schizophrenia) and to identify various brain states. Despite the elegant and generally easy-to-use nature of machine learning algorithms in neuroscience, they can produce inaccurate and even false results when implemented incorrectly. In this chapter, we outline the general methodology for EEG-based machine learning, pattern recognition, and classification. First, a description of feature extraction from various domains is presented. This is followed by an overview of supervised and unsupervised feature-reduction methods. We then focus on classification algorithms, performance evaluation, and methods to prevent overfitting. Finally, we discuss two applications of EEG-based machine learning: brain-computer interface (BCI) and detection and prediction of microsleeps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AdaBoost:

adaptive boosting

AUC-PR:

area under the curve of the precision recall

AUC-ROC:

area under the curve of the receiver operating characteristic

bagging:

bootstrap aggregating

BCI:

brain-computer interface

CSP:

common spatial pattern

EEG:

electroencephalogram

FBCSP:

filter bank common spatial pattern

FFT:

fast Fourier transform

fMRI:

functional magnetic resonance imaging

FN:

false negative

fNIRS:

functional near-infrared spectroscopy

FP:

false positive

FSULR:

unsupervised learning with ranking based feature selection

GM:

geometric mean

HA:

Hjorth activity

HC:

Hjorth complexity

HM:

Hjorth mobility

ICA:

independent component analysis

IWBW:

intensity-weighted bandwidth

IWMF:

intensity-weighted mean frequency

kNN:

k-nearest neighbour

KPCA:

kernel principal component analysis

LDA:

linear discriminant analysis

LOSO:

leave one-subject out

PCA:

principal component analysis

PPCA:

probabilistic principal component analysis

PR:

precision recall

Pr:

precision

ROC:

receiver operating characteristic

SN:

sensitivity

SP:

specificity

SSVEP:

steady-state visual evoked potential

SVM:

support vector machine

t-SNE:

t-distributed stochastic neighbour embedding

TN:

true negative

TP:

true positive

References

  1. Tong, S.,Thakor, N.V.: Quantitative EEG analysis methods and clinical applications. Artech House engineering in medicine & biology series. Artech House (2009)

    Google Scholar 

  2. Lopes da Silva, F.: EEG and MEG: Relevance to neuroscience. Neuron 80(5), 1112–1128 (2013). https://doi.org/10.1016/j.neuron.2013.10.017

  3. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869 (2008). https://doi.org/10.1038/nature06976

    Google Scholar 

  4. Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., Chute, D.: Functional near infrared spectroscopy (fNIRS): An emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 21(1), 9–37 (2007). https://doi.org/10.1080/13854040600910018

    Google Scholar 

  5. Buzsaki, G.: Rhythms of the brain. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  6. Cohen, M.X.: Analyzing neural time series data: Theory and practice. The MIT Press, Cambridge (2014)

    Google Scholar 

  7. Widmann, A., Schröger, E., Maess, B.: Digital filter design for electrophysiological data – A practical approach. J. Neurosci. Meth. 250, 34–46 (2015). https://doi.org/10.1016/j.jneumeth.2014.08.002

    Google Scholar 

  8. Mullen, T.R., Kothe, C.A.E., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Jung, T.-P., Cauwenberghs, G.: Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 62(11), 2553–2567 (2015). https://doi.org/10.1109/TBME.2015.2481482

    Google Scholar 

  9. Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4), 1443–1449 (2007). https://doi.org/10.1016/j.neuroimage.2006.11.004

    Google Scholar 

  10. Cohen, M.X.: Comparison of linear spatial filters for identifying oscillatory activity in multichannel data. J. Neurosci. Meth. 278, 1–12 (2017). https://doi.org/10.1016/j.jneumeth.2016.12.016

    Google Scholar 

  11. Jonmohamadi, Y., Poudel, G., Innes, C., Weiss, D., Krueger, R., Jones, R.: Comparison of beamformers for EEG source signal reconstruction. Biomed. Signal Process. Control 14(Supplement C), 175–188 (2014). https://doi.org/10.1016/j.bspc.2014.07.014

  12. Clercq, W.D., Vergult, A., Vanrumste, B., Van Paesschen, W., Van Huffel, S.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Biomed. Eng. 53(12), 2583–2587 (2006). https://doi.org/10.1109/TBME.2006.879459

    Google Scholar 

  13. Nolan, H., Whelan, R., Reilly, R.B.: FASTER: Fully automated statistical thresholding for EEG artifact rejection. J. Neurosci. Meth. 192(1), 152–162 (2010). https://doi.org/10.1016/j.jneumeth.2010.07.015

    Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edn. Springer, New York (2009)

    Google Scholar 

  15. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2013)

    MATH  Google Scholar 

  16. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin/Heidelberg (2006)

    MATH  Google Scholar 

  17. Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring. J. Neurosci. Meth. 167(1), 82–90 (2008). https://doi.org/10.1016/j.jneumeth.2007.09.022

    Google Scholar 

  18. Lemm, S., Schafer, C., Curio, G.: BCI competition 2003-data set III: Probabilistic modeling of sensorimotor mu; rhythms for classification of imaginary hand movements. IEEE Trans. Biomed. Eng. 51(6), 1077–1080 (2004). https://doi.org/10.1109/TBME.2004.827076

    Google Scholar 

  19. Dauwan, M., Linszen, M.M.J., Lemstra, A.W., Scheltens, P., Stam, C.J., Sommer, I.E.: EEG-based neurophysiological indicators of hallucinations in Alzheimer’s disease: Comparison with dementia with Lewy bodies. Neurobiol. Aging 67, 75–83 (2018). https://doi.org/10.1016/j.neurobiolaging.2018.03.013

    Google Scholar 

  20. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133, 271–279 (2014). https://doi.org/10.1016/j.neucom.2013.11.009

    Google Scholar 

  21. Buriro, A.B., Shoorangiz, R., Weddell, S.J., Jones, R.D.: Predicting microsleep states using EEG inter-channel relationships. IEEE Trans. Neural Syst. Rehabilitat. Eng. 26(12), 2260–2269 (2018). https://doi.org/10.1109/TNSRE.2018.2878587

    Google Scholar 

  22. Davidson, P.R., Jones, R.D., Peiris, M.T.R.: EEG-based lapse detection with high temporal resolution. IEEE Trans. Biomed. Eng. 54(5), 832–839 (2007). https://doi.org/10.1109/TBME.2007.893452

    Google Scholar 

  23. Shahidi Zandi, A., Tafreshi, R., Javidan, M., Dumont, G.A.: Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. EEE Trans. Biomed. Eng. 60(5), 1401–1413 (2013). https://doi.org/10.1109/TBME.2012.2237399

    Google Scholar 

  24. Kwon, Y.-H., Shin, S.-B., Kim, S.-D.: Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors 18(5), 1383 (2018). https://doi.org/10.3390/s18051383

    Google Scholar 

  25. Şen, B., Peker, M., Çavuşoğlu, A., Çelebi, F.: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 38(3), 1–21 (2014). https://doi.org/10.1007/s10916-014-0018-0

    Google Scholar 

  26. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalography Clin. Neurophysiol. 29(3), 306–310 (1970). https://doi.org/10.1016/0013-4694(70)90143-4

    Google Scholar 

  27. Vidaurre, C., Krämer, N., Blankertz, B., Schlögl, A.: Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Netw. 22(9), 1313–1319 (2009). https://doi.org/10.1016/j.neunet.2009.07.020

    Google Scholar 

  28. Chapotot, F., Becq, G.: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules. Int. J. Adap. Control Signal Process. 24(5), 409–423 (2010). https://doi.org/10.1002/acs.1147

    MathSciNet  MATH  Google Scholar 

  29. Padilla-Buritica, J.I., Martinez-Vargas, J.D., Castellanos-Dominguez, G.: Emotion discrimination using spatially compact regions of interest extracted from imaging EEG activity. Front. Comput. Neurosci. 10, 55 (2016). https://doi.org/10.3389/fncom.2016.00055

    Google Scholar 

  30. Cecchin, T., Ranta, R., Koessler, L., Caspary, O., Vespignani, H., Maillard, L.: Seizure lateralization in scalp EEG using Hjorth parameters. Clin. Neurophysiol. 121(3), 290–300 (2010). https://doi.org/10.1016/j.clinph.2009.10.033

    Google Scholar 

  31. Greene, B.R., Faul, S., Marnane, W.P., Lightbody, G., Korotchikova, I., Boylan, G.B.: A comparison of quantitative EEG features for neonatal seizure detection. Clin. Neurophysiol. 119(6), 1248–1261 (2008). https://doi.org/10.1016/j.clinph.2008.02.001

    Google Scholar 

  32. Imtiaz, S.A., Saremi-Yarahmadi, S., Rodriguez-Villegas, E.: Automatic detection of sleep spindles using Teager energy and spectral edge frequency. In: Proceedings of IEEE Biomedical Circuits System Conference, pp. 262–265. IEEE (2013). https://doi.org/10.1109/BioCAS.2013.6679689

  33. Di Ieva, A., Grizzi, F., Jelinek, H., Pellionisz, A.J., Losa, G.A.: Fractals in the neurosciences, Part I: General principles and basic neurosciences. The Neuroscientist 20(4), 403–417 (2014). https://doi.org/10.1177/1073858413513927

    Google Scholar 

  34. Hosseini, S.A.: A computational framework to discriminate different anesthesia states from EEG signal. Biomed. Eng. Appl. Basis Commun. 30(03), 1850020 (2018). https://doi.org/10.4015/S1016237218500205

    Google Scholar 

  35. Pavithra, M., NiranjanaKrupa, B., Sasidharan, A., Kutty, B.M., Lakkannavar, M.: Fractal dimension for drowsiness detection in brainwaves. In: Proc. Int. Conf. Contemp. Comput. Informat. (IEEE, 2014) pp. 757–761. https://doi.org/10.1109/IC3I.2014.7019676

  36. Yan, R., Zhang, C., Spruyt, K., Wei, L., Wang, Z., Tian, L., Li, X., Ristaniemi, T., Zhang, J., Cong, F.: Multi-modality of polysomnography signals’ fusion for automatic sleep scoring. Biomed. Signal Process. Control 49, 14–23 (2019). https://doi.org/10.1016/j.bspc.2018.10.001

    Google Scholar 

  37. Paramanathan, P., Uthayakumar, R.: Application of fractal theory in analysis of human electroencephalographic signals. Comput. Biol. Med. 38(3), 372–378 (2008). https://doi.org/10.1016/j.compbiomed.2007.12.004

    MATH  Google Scholar 

  38. Polychronaki, G.E., Ktonas, P.Y., Gatzonis, S., Siatouni, A., Asvestas, P.A., Tsekou, H., Sakas, D., Nikita, K.S.: Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. J. Neural Eng. 7(4), 046007 (2010)

    Google Scholar 

  39. Ahmadlou, M., Adeli, H., Adeli, A.: Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease. Alzheimer Dis. Assoc. Disorders 25(1) (2011)

    Google Scholar 

  40. Sabeti, M., Katebi, S.D., Boostani, R., Price, G.W.: A new approach for EEG signal classification of schizophrenic and control participants. Expert Syst. Appl. 38(3), 2063–2071 (2011). https://doi.org/10.1016/j.eswa.2010.07.145

    Google Scholar 

  41. D’Alessandro, M., Vachtsevanos, G., Hinson, A., Esteller, R., Echauz, J., Litt, B.: A genetic approach to selecting the optimal feature for epileptic seizure prediction. In: Proceedings of International Conference IEEE Engineering Medical Biology Society, Vol. 23, pp. 1703–1706. IEEE (2001). https://doi.org/10.1109/IEMBS.2001.1020544

  42. Blythe, D., Haufe, A.J.S., Müller, K.-R., Nikulin, V.V.: The effect of linear mixing in the EEG on Hurst exponent estimation. NeuroImage 99, 377–387 (2014). https://doi.org/10.1016/j.neuroimage.2014.05.041

    Google Scholar 

  43. Carreras, B.A., van Milligen, B.P., Pedrosa, M.A., Balbín, R., Hidalgo, C., Newman, D.E., Sánchez, E., Frances, M., García-Cortés, I., Bleuel, J., Endler, M., Riccardi, C., Davies, S., Matthews, G.F., Martines, E., Antoni, V., Latten, A., Klinger, T.: Self-similarity of the plasma edge fluctuations. Phys. Plasmas 5(10), 3632–3643 (1998). https://doi.org/10.1063/1.873081

    Google Scholar 

  44. Yuan, Q., Zhou, W., Li, S., Cai, D.: Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 96(1–2), 29–38 (2011) . https://doi.org/10.1016/j.eplepsyres.2011.04.013

    Google Scholar 

  45. Wang, X.-W., Nie, D., Lu, B.-L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014). https://doi.org/10.1016/j.neucom.2013.06.046

    Google Scholar 

  46. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals & Systems. Prentice-Hall, Inc., Upper Saddle River (1996)

    Google Scholar 

  47. Kaplan, A.Y., Fingelkurts, A.A., Fingelkurts, A.A., Borisov, S.V., Darkhovsky, B.S.: Nonstationary nature of the brain activity as revealed by EEG/MEG: Methodological, practical and conceptual challenges. Signal Process. 85(11), 2190–2212 (2005) . https://doi.org/10.1016/j.sigpro.2005.07.010

    MATH  Google Scholar 

  48. Muthuswamy, J., Thakor, N.V.: Spectral analysis methods for neurological signals. J. Neurosci. Meth. 83(1), 1–14 (1998). https://doi.org/10.1016/S0165-0270(98)00065-X

    Google Scholar 

  49. Gross, J.: Analytical methods and experimental approaches for electrophysiological studies of brain oscillations. J. Neurosci. Meth. 228, 57–66 (2014). https://doi.org/10.1016/j.jneumeth.2014.03.007

    Google Scholar 

  50. Mallat, S.: A wavelet tour of signal processing, 3rd edn (pp. 795–805). Academic Press, Boston (2009)

    Google Scholar 

  51. Freeman, W.J.: Hilbert transform for brain waves. Scholarpedia 2(1), 1338 (2007). https://doi.org/10.4249/scholarpedia.1338

    Google Scholar 

  52. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993) . https://doi.org/10.1109/78.258082

    MATH  Google Scholar 

  53. Durka, P.J., Blinowska, K.J.: Analysis of EEG transients by means of matching pursuit. Ann. Biomed. Eng. 23(5), 608–611 (1995) . https://doi.org/10.1007/BF02584459

    Google Scholar 

  54. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacous. 15(2), 70–73 (1967). https://doi.org/10.1109/TAU.1967.1161901

    Google Scholar 

  55. Babiloni, C., Pistoia, F., Sarà, M., Vecchio, F., Buffo, P., Conson, M., Onorati, P., Albertini, G., Rossini, P.M.: Resting state eyes-closed cortical rhythms in patients with locked-in-syndrome: An EEG study. Clin. Neurophysiol. 121(11), 1816–1824 (2010) . https://doi.org/10.1016/j.clinph.2010.04.027

    Google Scholar 

  56. Shoorangiz, R., Weddell, S.J., Jones, R.D.: Bayesian multi-subject factor analysis to predict microsleeps from EEG power spectral features. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 39, pp. 4183–4186. IEEE (2017) . https://doi.org/10.1109/EMBC.2017.8037778

  57. Lin, F., Ko, L., Chuang, C., Su, T., Lin, C.: Generalized EEG-based drowsiness prediction system by using a self-organizing neural fuzzy system. IEEE Trans. Circuits Syst. I Regular Papers 59(9), 2044–2055. (2012) https://doi.org/10.1109/TCSI.2012.2185290

    MathSciNet  MATH  Google Scholar 

  58. Sabeti, M., Katebi, S., Boostani, R.: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif. Intell. Med. 47(3), 263–274 (2009). https://doi.org/10.1016/j.artmed.2009.03.003

    Google Scholar 

  59. Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Meth. Prog. Biomed. 80(3), 187–194 (2005). https://doi.org/10.1016/j.cmpb.2005.06.012

    Google Scholar 

  60. Chen, L.-l., Zhao, Y., Zhang, J., Zou, J.-Z.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015). https://doi.org/10.1016/j.eswa.2015.05.028

  61. Yeo, M.V.M., Li, X., Shen, K., Wilder-Smith, E.P.V.: Can SVM be used for automatic EEG detection of drowsiness during car driving? Safety Sci. 47(1), 115–124 (2009). https://doi.org/10.1016/j.ssci.2008.01.007

    Google Scholar 

  62. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabilitat. Eng. 8(4), 441–446 (2000). https://doi.org/10.1109/86.895946

    Google Scholar 

  63. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.-R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2008). https://doi.org/10.1109/MSP.2008.4408441

    Google Scholar 

  64. Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: Proceedings of International Joint Conference on Neural Network, pp. 2390–2397. IEEE, (2008). https://doi.org/10.1109/IJCNN.2008.4634130

  65. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 39 (2012). https://doi.org/10.3389/fnins.2012.00039

    Google Scholar 

  66. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2011). https://doi.org/10.1109/TBME.2010.2082539

    Google Scholar 

  67. Kang, H., Choi, S.: Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw. 57(Supplement C), 39–50 (2014). https://doi.org/10.1016/j.neunet.2014.05.012

  68. Wu, W., Chen, Z., Gao, X., Li, Y., Brown, E.N., Gao, S.: Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 639–653 (2015). https://doi.org/10.1109/TPAMI.2014.2330598

    Google Scholar 

  69. Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs. Pattern Recogn. 45(6), 2137–2144 (2012). https://doi.org/10.1016/j.patcog.2011.04.018

    MATH  Google Scholar 

  70. Mwangi, B., Tian, T.S., Soares, J.C.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229–244 (2014). https://doi.org/10.1007/s12021-013-9204-3

    Google Scholar 

  71. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014) . https://doi.org/10.1016/j.compeleceng.2013.11.024

    Google Scholar 

  72. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: A new perspective. Neurocomputing 300, 70–79 (2018). https://doi.org/10.1016/j.neucom.2017.11.077

    Google Scholar 

  73. Miao, J., Niu, L.: A survey on feature selection. Proc. Comput. Sci. 91, 919–926 (2016). https://doi.org/10.1016/j.procs.2016.07.111

    Google Scholar 

  74. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002). https://doi.org/10.1109/34.990133

    Google Scholar 

  75. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction, 1st edn. Springer Publishing Company, Incorporated (2007)

    MATH  Google Scholar 

  76. Singh, D.A.A.G., Balamurugan, S.A.A., Leavline, E.J.: An unsupervised feature selection algorithm with feature ranking for maximizing performance of the classifiers. Int. J. Automat. Comput. 12(5), 511–517 (2015) . https://doi.org/10.1007/s11633-014-0859-5

    Google Scholar 

  77. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010). https://doi.org/10.1016/j.eswa.2010.06.065

    Google Scholar 

  78. ai Li, M., Yong Luo, X., fu Yang, J.: Extracting the nonlinear features of motor imagery EEG using parametric t-SNE. Neurocomputing 218, 371–381 (2016). https://doi.org/10.1016/j.neucom.2016.08.083

  79. Birjandtalab, J., Pouyan, M.B., Cogan, D., Nourani, M., Harvey, J.: Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput. Biol. Med. 82, 49–58 (2017). https://doi.org/10.1016/j.compbiomed.2017.01.011

    Google Scholar 

  80. Yu, X., Chum, P., Sim, K.-B.: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system. Optik 125(3), 1498–1502 (2014). https://doi.org/10.1016/j.ijleo.2013.09.013

    Google Scholar 

  81. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Google Scholar 

  82. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Statistical Methodology) 61(3), 611–622 (1999). https://doi.org/10.1111/1467-9868.00196

  83. Bishop, C.M.: Variational principal components. In: Proceedings of International Conference on Artificial Neural Networks, Vol. 9, pp. 509–514. Institution of Engineering and Technology (1999). https://doi.org/10.1049/cp_19991160

  84. Ding, X., He, L., Carin, L.: Bayesian robust principal component analysis. IEEE Trans. Image Process. 20(12), 3419–3430 (2011). https://doi.org/10.1109/TIP.2011.2156801

    MathSciNet  MATH  Google Scholar 

  85. Guyon, I.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  86. Kwak, N., Choi, C.-H.: Input feature selection by mutual information based on Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002). https://doi.org/10.1109/TPAMI.2002.1114861

    Google Scholar 

  87. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5(4), 537–550 (1994). https://doi.org/10.1109/72.298224

    Google Scholar 

  88. Arvaneh, M., Guan, C., Ang, K., Quek, C.: Mutual information-based optimization of sparse spatio-spectral filters in brain-computer interface. Neural Comput. Appl. 25(3–4), 625–634 (2014). https://doi.org/10.1007/s00521-013-1523-7

    Google Scholar 

  89. Yang, J., Zhang, L., Xu, Y., Yang, J.-Y.: Beyond sparsity: the role of L1-optimizer in pattern classification. Pattern Recogn. 45(3), 1104–1118 (2012). https://doi.org/10.1016/j.patcog.2011.08.022

    MATH  Google Scholar 

  90. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

    Google Scholar 

  91. Liu, M., Zhang, D., Shen, D.: Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60(2), 1106–1116 (2012). https://doi.org/10.1016/j.neuroimage.2012. 01.055

    Google Scholar 

  92. Fell, J., Röschke, J., Mann, K., Schäffner, C.: Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures. Electroencephalography Clin. Neurophysiol. 98(5), 401–410 (1996). https://doi.org/10.1016/0013-4694(96)95636-9

    Google Scholar 

  93. Lin, Y., Wang, C., Jung, T., Wu, T., Jeng, S., Duann, J., Chen, J.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010). https://doi.org/10.1109/TBME.2010.2048568

    Google Scholar 

  94. Schlögl, A., Lee, F., Bischof, H., Pfurtscheller, G.: Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J. Neural Eng. 2(4), L14–L22 (2005). https://doi.org/10.1088/1741-2560/2/4/l02

    Google Scholar 

  95. Quitadamo, L.R., Cavrini, F., Sbernini, L., Riillo, F., Bianchi, L., Seri, S., Saggio, G.: Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: A review. J. Neural Eng. 14(1), 011001 (2017)

    Google Scholar 

  96. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998). https://doi.org/10.1109/5254.708428

    Google Scholar 

  97. Schölkopf, B.: The kernel trick for distances. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, pp. 301–307. MIT Press (2001)

    Google Scholar 

  98. Roth, V., Steinhage, V.: Nonlinear discriminant analysis using kernel functions. In: Solla, S.A., Leen, T.K., Müller, K. (eds.) Advances in Neural Information Processing Systems, pp. 568–574. MIT Press (2000)

    Google Scholar 

  99. Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012). https://doi.org/10.1016/j.eswa.2011.07.008

    Google Scholar 

  100. Tito, M., Cabrerizo, M., Ayala, M., Jayakar, P., Adjouadi, M.: A comparative study of intracranial EEG files using nonlinear classification methods. Ann. Biomed. Eng. 38(1), 187–99 (2010)

    Google Scholar 

  101. Lawrence, n.d., Schölkopf, B.: Estimating a kernel Fisher discriminant in the presence of label noise. In: Proceedings of International Conference on Machine Learning, ICML ’01, Vol. 18, pp. 306–313. ACM (2001)

    Google Scholar 

  102. Kayikcioglu, T., Aydemir, O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recogn. Lett. 31(11), 1207–1215 (2010). https://doi.org/10.1016/j.patrec.2010.04.009

    Google Scholar 

  103. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991). https://doi.org/10.1109/21.97458

    MathSciNet  Google Scholar 

  104. Polat, K., Güneş, S.: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007). https://doi.org/10.1016/j.amc.2006.09.022

    MathSciNet  MATH  Google Scholar 

  105. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  106. Pandya, R., Pandya, J.: C5.0 algorithm to improved decision tree with feature selection and reduced error pruning. Int. J. Comput. Appl. 117(16), 18–21 (2015)

    Google Scholar 

  107. Jin, C., De-lin, L., Fen-Xiang, M.: An improved ID3 decision tree algorithm. In: Proceedings of International Conference on Computer Science and Education, Vol. 4, pp. 127–130. IEEE (2009). https://doi.org/10.1109/ICCSE.2009.5228509

  108. Nisbet, R., Miner, G., Yale, K.: Chapter 8 - Advanced algorithms for data mining. In: Nisbet, R., Miner, G., Yale, K. (eds.) Handbook of Statistical Analysis and Data Mining Applications, 2nd edn., pp. 149–167. Academic Press, Boston (2018)

    MATH  Google Scholar 

  109. Sun, S., Zhang, C., Zhang, D.: An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recogn. Lett. 28(15), 2157–2163 (2007). https://doi.org/10.1016/j.patrec.2007.06.018

    Google Scholar 

  110. Peiris, M.T.R., Davidson, P.R., Bones, P.J., Jones, R.D.: Detection of lapses in responsiveness from the EEG. J. Neural Eng. 8(1), 016003 (2011)

    Google Scholar 

  111. Hassan, A.R., Subasi, A.: Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Comput. Meth. Prog. Biomed. 136, 65–77 (2016). https://doi.org/10.1016/j.cmpb.2016.08.013

    Google Scholar 

  112. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC (2012)

    Google Scholar 

  113. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504

    MathSciNet  MATH  Google Scholar 

  114. Tahernezhad-Javazm, F., Azimirad, V., Shoaran, M.: A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems. J. Neural Eng. 15(2), 021007 (2018). https://doi.org/10.1088/1741-2552/aa8063

    Google Scholar 

  115. Frenay, B., Verleysen, M.: Classification in the presence of label noise: A survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014). https://doi.org/10.1109/TNNLS.2013.2292894

    MATH  Google Scholar 

  116. Verbaeten, S., Van Assche, A.: Ensemble methods for noise elimination in classification problems. In: Windeatt, T., Roli, F. (eds.) Lecture Notes in Computer Science, pp. 317–325. Springer, Berlin/Heidelberg (2003)

    MATH  Google Scholar 

  117. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655

    MATH  Google Scholar 

  118. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    MATH  Google Scholar 

  119. Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., Dickhaus, H.: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Comput. Meth. Prog. Biomed. 108(1), 10–19 (2012). https://doi.org/10.1016/j.cmpb.2011.11.005

    Google Scholar 

  120. Shen, K., Ong, C., Li, X., Hui, Z., Wilder-Smith, E.P.V.: A feature selection method for multilevel mental fatigue EEG classification. IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007). https://doi.org/10.1109/TBME.2007.890733

    Google Scholar 

  121. Tibshirani, R.: Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B (Statistical Methodology) 73(3), 273–282 (2011). https://doi.org/10.1111/j.1467-9868.2011.00771.x

  122. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Statistical Methodology) 67(2), 301–320 (2005)

    Google Scholar 

  123. Bunea, F., She, Y., Ombao, H., Gongvatana, A., Devlin, K., Cohen, R.: Penalized least squares regression methods and applications to neuroimaging. NeuroImage 55(4), 1519–1527 (2011). https://doi.org/10.1016/j.neuroimage.2010.12.028

    Google Scholar 

  124. Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009). https://doi.org/10.1016/j.neuroimage.2008.08.020

    Google Scholar 

  125. Ryali, S., Supekar, K., Abrams, D.A., Menon, V.: Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 51(2), 752–764 (2010). https://doi.org/10.1016/j.neuroimage.2010.02.040

    Google Scholar 

  126. Mohr, H., Wolfensteller, U., Frimmel, S., Ruge, H.: Sparse regularization techniques provide novel insights into outcome integration processes. NeuroImage 104, 163–176 (2015). https://doi.org/10.1016/j.neuroimage.2014.10.025

    Google Scholar 

  127. Li, F., Liu, T., Wang, F., Li, H., Gong, D., Zhang, R., Jiang, Y., Tian, Y., Guo, D., Yao, D., Xu, P.: Relationships between the resting-state network and the P3: Evidence from a scalp EEG study. Sci. Rep. 5, 15129 (2015). https://doi.org/10.1038/srep15129

    Google Scholar 

  128. Zhao, Q., Peng, H., Hu, B., Liu, Q., Liu, L., Qi, Y., Li, L.: Improving individual identification in security check with an EEG based biometric solution. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) Proceedings of International Conference on Brain Information, pp. 145–155. Springer, Berlin/Heidelberg (2010). https://doi.org/10.1007/978-3-642-15314-3_14

    Google Scholar 

  129. DelPozo-Banos, M., Travieso, C.M., Weidemann, C.T., Alonso, J.B.: EEG biometric identification: A thorough exploration of the time-frequency domain. J. Neural Eng. 12(5), 056019 (2015)

    Google Scholar 

  130. Jatupaiboon, N., Pan-ngum, S., Israsena, P.: Real-time EEG-based happiness detection system. Sci. World J. 2013, 12 (2013). https://doi.org/10.1155/2013/618649

  131. Handiru, V.S., Prasad, V.A.: Optimized bi-objective EEG channel selection and cross-subject generalization with brain–computer interfaces. IEEE Trans. Human Mach. Syst. 46(6), 777–786 (2016). https://doi.org/10.1109/THMS.2016.2573827

    Google Scholar 

  132. Berrar, D.: Performance measures for binary classification. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 546–560. Academic Press, Oxford (2019)

    Google Scholar 

  133. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009). https://doi.org/10.1109/TKDE.2008.239

    Google Scholar 

  134. Tharwat, A.: Classification Assessment Methods, Applied Computing and Informatics (in press). https://doi.org/10.1016/j.aci.2018.08.003

  135. Sun, Y., Wong, A.K.C., Kamel, M.S.: Classification of imbalanced data: A review. Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009). https://doi.org/10.1142/S0218001409007326

    Google Scholar 

  136. Chawla, N.V.: Data mining for imbalanced datasets: An overview. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 875–886. Springer, Boston (2010)

    Google Scholar 

  137. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS ONE 12(6), 1–17 (2017). https://doi.org/10.1371/journal.pone.0177678

    Google Scholar 

  138. López, V., Fernández, A. García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013). https://doi.org/10.1016/j.ins.2013.07.007

    Google Scholar 

  139. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009). https://doi.org/10.1016/j.ipm.2009.03.002

    Google Scholar 

  140. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    MathSciNet  Google Scholar 

  141. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of International Conference on Machine Learning, ICML ’06, Vol. 23, pp. 233–240. ACM, New York (2006). https://doi.org/10.1145/1143844.1143874

  142. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015). https://doi.org/10.1371/journal.pone.0118432

    Google Scholar 

  143. Vihinen, M.: How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genom. 13(4), S2 (2012). https://doi.org/10.1186/1471-2164-13-S4-S2

    Google Scholar 

  144. Vihinen, M.: Guidelines for reporting and using prediction tools for genetic variation analysis. Hum. Mutat. 34(2), 275–282 (2013). https://doi.org/10.1002/humu.22253

    Google Scholar 

  145. Lehmann, C., Koenig, T., Jelic, V., Prichep, L., John, R.E., Wahlund, L.-O., Dodge, Y., Dierks, T.: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Meth. 161(2), 342–350 (2007). https://doi.org/10.1016/j.jneumeth.2006.10.023

    Google Scholar 

  146. Oh, S.L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R., Arunkumar, N., Murugappan, M., Acharya, U.R.: A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3689-5

    Google Scholar 

  147. Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., Morabito, F.C.: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 323, 96–107 (2019). https://doi.org/10.1016/j.neucom.2018.09.071

    Google Scholar 

  148. Nourmohammadi, A., Jafari, M., Zander, T.O.: A survey on unmanned aerial vehicle remote control using brain–computer interface. IEEE Trans. Hum. Mach. Syst. 48(4), 337–348 (2018). https://doi.org/10.1109/THMS.2018.2830647

    Google Scholar 

  149. Nguyen-Ky, T., Wen, P., Li, Y.: Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals. IEEE Trans. Biomed. Eng. 60(6), 1488–1498 (2013). https://doi.org/10.1109/TBME.2012.2236649

    Google Scholar 

  150. Shoorangiz, R., Weddell, S.J., Jones, R.D.: Prediction of microsleeps from EEG: Preliminary results. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 38, pp. 4650–4653. IEEE (2016). https://doi.org/10.1109/EMBC.2016.7591764

  151. van Gerven, M. Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., Ramsey, N., Haselager, P., Vuurpijl, L., Gielen, S., Desain, P.: The brain–computer interface cycle. J. Neural Eng. 6(4), 041001 (2009)

    Google Scholar 

  152. Hwang, H.-J., Kim, S., Choi, S., Im, C.-H.: EEG-based brain-computer interfaces: A thorough literature survey. Int. J. Hum. Comput. Interact. 29(12), 814–826 (2013). https://doi.org/10.1080/10447318.2013.780869

    Google Scholar 

  153. Vaughan, T.M.: Guest editorial brain-computer interface technology: A review of the second international meeting. IEEE Trans. Neural Syst. Rehabilitat. Eng. 11(2), 94–109 (2003). https://doi.org/10.1109/TNSRE.2003.814799

    Google Scholar 

  154. Zhang, S., Wang, S., Zheng, D., Zhu, K., Dai, M.: A novel pattern with high-level commands for encoding motor imagery-based brain computer interface. Pattern Recogn. Lett. 125, 28–34 (2019). https://doi.org/10.1016/j.patrec.2019.03.017

    Google Scholar 

  155. Li, M.-A., Wang, Y.-F., Jia, S.-M., Sun, Y.-J., Yang, J.-F.: Decoding of motor imagery EEG based on brain source estimation. Neurocomputing 339, 182–193 (2019). https://doi.org/10.1016/j.neucom.2019.02.006

    Google Scholar 

  156. Xu, Y., Ding, C., Shu, X., Gui, K., Bezsudnova, Y., Sheng, X., Zhang, D.: Shared control of a robotic arm using non-invasive brain–computer interface and computer vision guidance. Robot. Autonom. Syst. 115, 121–129 (2019). https://doi.org/10.1016/j.robot.2019.02.014

    Google Scholar 

  157. Higashi, H., Tanaka, T.: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans. Biomed. Eng. 60(4), 1100–1110 (2013). https://doi.org/10.1109/TBME.2012.2215960

    Google Scholar 

  158. Kevric, J., Subasi, A.: Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. Control 31, 398–406 (2017). https://doi.org/10.1016/j.bspc.2016.09.007

    Google Scholar 

  159. Hortal, E., Planelles, D., Costa, A., Iáñez, E., Úbeda, A., Azorín, J.M., Fernández, E.: SVM-based brain–machine interface for controlling a robot arm through four mental tasks. Neurocomputing 151, 116–121 (2015). https://doi.org/10.1016/j.neucom.2014.09.078

    Google Scholar 

  160. Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016). https://doi.org/10.1088/1741-2560/14/1/016003

    Google Scholar 

  161. Li, J., Struzik, Z., Zhang, L., Cichocki, A.: Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing 165, 23–31 (2015). https://doi.org/10.1016/j.neucom.2014.08.092

    Google Scholar 

  162. Raza, H., Rathee, D., Zhou, S.-M., Cecotti, H., Prasad, G.: Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface. Neurocomputing 343, 154–166 (2019). https://doi.org/10.1016/j.neucom.2018.04.087

    Google Scholar 

  163. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017). https://doi.org/10.1002/hbm.23730

    Google Scholar 

  164. Farwell, L.A., Donchin, E.: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography Clin. Neurophysiol. 70(6), 510–523 (1988). https://doi.org/10.1016/0013-4694(88)90149-6

    Google Scholar 

  165. Liu, M., Wu, W., Gu, Z., Yu, Z., Qi, F., Li, Y.: Deep learning based on batch normalization for P300 signal detection. Neurocomputing 275, 288–297 (2018). https://doi.org/10.1016/j.neucom.2017.08.039

    Google Scholar 

  166. Tomioka, R., M uller, K.-R.: A regularized discriminative framework for EEG analysis with application to brain–computer interface. NeuroImage 49(1), 415–432 (2010). https://doi.org/10.1016/j.neuroimage.2009.07.045

  167. Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: Toward enhanced P300 speller performance. J Neurosci. Meth. 167(1), 15–21 (2008). https://doi.org/10.1016/j.jneumeth.2007.07.017

    Google Scholar 

  168. Chen, Y., Ke, Y., Meng, G., Jiang, J., Qi, H., Jiao, X., Xu, M., Zhou, P., He, F., Ming, D.: Enhancing performance of P300-speller under mental workload by incorporating dual-task data during classifier training. Comput. Meth. Progr. Biomed. 152, 35–43 (2017). https://doi.org/10.1016/j.cmpb.2017.09.002

    Google Scholar 

  169. Salvaris, M., Sepulveda, F.: Visual modifications on the P300 speller BCI paradigm. J. Neural Eng. 6(4), 046011 (2009). https://doi.org/10.1088/1741-2560/6/4/046011

    Google Scholar 

  170. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https://doi.org/10.1088/1741-2552/aace8c

    Google Scholar 

  171. Li, Q., Shi, K., Ma, S., Gao, N.: Improving classification accuracy of SVM ensemble using random training set for BCI P300-speller. In: IEEE International Conference on Mechatronics and Automation, pp. 2611–2616. IEEE (2016). https://doi.org/10.1109/ICMA.2016.7558978

  172. Lee, Y.-R., Kim, H.-N.: A data partitioning method for increasing ensemble diversity of an eSVM-based P300 speller. Biomed. Signal Process. Control 39, 53–63 (2018). https://doi.org/10.1016/j.bspc.2017.07.025

    Google Scholar 

  173. Akram, F., Han, S.M., Kim, T.-S.: An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Comput. Biol. Med. 56, 30–36 (2015). https://doi.org/10.1016/j.compbiomed.2014.10.021

    Google Scholar 

  174. Zhu, D., Bieger, J., Garcia Molina, G. Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci. 2010, 12 (2010). https://doi.org/10.1155/2010/702357

  175. Wang, M., Daly, I., Allison, B.Z., Jin, J., Zhang, Y., Chen, L., Wang, X.: A new hybrid BCI paradigm based on P300 and SSVEP. J. Neurosci. Meth. 244, 16–25 (2015). https://doi.org/10.1016/j.jneumeth.2014.06.003

    Google Scholar 

  176. Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.: Self-regulation of brain rhythms in the precuneus: A novel BCI paradigm for patients with ALS. J. Neural Eng. 13(6), 066021 (2016). https://doi.org/10.1088/1741-2560/13/6/066021

    Google Scholar 

  177. Zhang, N., Zhou, Z., Liu, Y., Yin, E., Jiang, J., Hu, D.: A novel single-character visual BCI paradigm with multiple active cognitive tasks. IEEE Trans. Biomed. Eng. (in press). https://doi.org/10.1109/TBME.2019.2900555

  178. Kaongoen, N., Jo, S.: A novel hybrid auditory BCI paradigm combining ASSR and P300. J. Neurosci. Meth. 279, 44–51 (2017). https://doi.org/10.1016/j.jneumeth.2017.01.011

    Google Scholar 

  179. Jones, R.D., Poudel, G.R., Innes, C.R.H., Davidson, P.R., Peiris, M.T.R., Malla, A.M., Signal, T.L., Carroll, G.J., Watts, R., Bones, P.J.: Lapses of responsiveness: Characteristics, detection, and underlying mechanisms. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 32, pp. 1788–1791. IEEE (2010). https://doi.org/10.1109/IEMBS.2010.5626385

  180. Peiris, M.T.R. Jones, R.D., Davidson, P.R., Carroll, G.J., Bones, P.J.: Frequent lapses of responsiveness during an extended visuomotor tracking task in non-sleep-deprived subjects. J. Sleep Res. 15(3), 291–300 (2006). https://doi.org/10.1111/j.1365-2869.2006.00545.x

    Google Scholar 

  181. Innes, C.R.H., Poudel, G.R., Jones, R.D.: Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction. Chronobiol. Int. 30(9), 1187–1196 (2013). https://doi.org/10.3109/07420528.2013.810222

    Google Scholar 

  182. Poudel, G.R., Innes, C.R.H., Bones, P.J., Watts, R., Jones, R.D.: Losing the struggle to stay awake: Divergent thalamic and cortical activity during microsleeps. Hum. Brain Mapp. 35(1), 257–269 (2014). https://doi.org/10.1002/hbm.22178

    Google Scholar 

  183. Golz, M., Sommer, D., Chen, M., Trutschel, U., Mandic, D.: Feature fusion for the detection of microsleep events. J. VLSI Signal Process. Syst. Signal Image Video Technol. 49(2), 329–342 (2007). https://doi.org/10.1007/s11265-007-0083-4

    Google Scholar 

  184. Ayyagari, S.: Reservoir computing approaches to EEG-based detection of microsleeps Ph.D. Thesis (University of Canterbury, Christchurch, New Zealand (2017)

    Google Scholar 

  185. Golz, M., Sommer, D., Krajewski, J.: Prediction of immediately occurring microsleep events from brain electric signals. Curr. Directions Biomed. Eng. 2(1), 149–153 (2016). https://doi.org/10.1515/cdbme-2016-0035

    Google Scholar 

  186. Baseer, A., Weddell, S.J., Jones, R.D.: Prediction of microsleeps using pairwise joint entropy and mutual information between EEG channels. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 39, pp. 4495–4498. IEEE (2017). https://doi.org/10.1109/EMBC.2017.8037855

  187. Buriro, A.B., Shoorangiz, R., Weddell, S.J., Jones, R.D.: Ensemble learning based on overlapping clusters of subjects to predict microsleep states from EEG. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 40, pp. 3036–3039. IEEE (2018). https://doi.org/10.1109/EMBC.2018.8512962

  188. Shoorangiz, R.: Prediction of microsleeps from EEG using Bayesian approaches Ph.D. Thesis. University of Canterbury, Christchurch, New Zealand (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Shoorangiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shoorangiz, R., Weddell, S.J., Jones, R.D. (2023). EEG-Based Machine Learning: Theory and Applications. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_70

Download citation

Publish with us

Policies and ethics