Skip to main content

Flexible and Soft Materials and Devices for Neural Interface

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

The stability of the interface between neural tissue and chronically implanted devices is crucial for interrogation for both the central and peripheral nervous systems. One of the main challenges of chronic implants is the degradation of recording and stimulation performance over time. This is partly due to the inflammatory host tissue responses to the implanted devices, resulting in decreased density and health of neuronal elements at the electrode vicinity and scar encapsulation. In the last decade, a significant effort has been made in the development of devices that have subcellular features and/or made with soft, flexible, and stretchable materials. These strategies can trigger less foreign body response and improve the integration of the implanted device and neural tissue. In this chapter, we will discuss the most recent strategies adopted to tune the structural, functional, and dimensional properties of materials with the aim to match the mechanical, chemical, and electrical properties of the nervous system. We will discuss these strategies applied to different components of an implanted device from insulation substrate and conductive electrode materials to soft tethers and modulus-matching coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

BNB:

Blood nerve barrier

CNS:

Central nervous system

CNT:

Carbon nanotube

DA:

Dopamine

E:

Young’s Modulus

EEG:

Electroenceophalography

F:

Force

FINE:

Flat interface nerve electrode

G:

Conductance G

GPa:

GigaPascals

I:

Moment of inertia

ITO:

Indium tin oxide

MECH:

Micropatterned electrically conductive hydrogel-based elastronics

MEMS:

Microelectromechanical systems

MS:

Microspheres

NET:

Neural integration, ultraflexiblenanoelectronic thread

PDMS:

Polydimethylsiloxane

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PEG:

Poly(ethyleneglycol)

PLGA:

Poly(lactic-co-glycolic) acid

PNS:

Peripheral nervous system

PPy:

Polypyrrole

PSS:

Polystyrene sulfonate

SCP:

Slow cortical potential

SCS:

Spinal cord stimulation

SMP:

Shape-memory polymer

Tf-LIFE:

The thin-film longitudinal intrafascicular electrodes

Tg:

Glass transition temperature

TIME:

Transverse intrafascicular multichannel electrodes

μECoG:

Micro-electrocorticography

μIPs:

Micro-invasive probes

μ-ILED:

Microscale-inorganic LED

USEA:

Utah slanted microelectrode array

References

  1. Jablensky, A., Johnson, R., Bunney, W., Cruz, M., Durkin, M., Familusi, J., Gourie-Devi, M., Jamison, D., Jenkins, R., Kaaya, S.: Neurological, psychiatric, and developmental disorders; meeting the challenge in the developing world. In: Institute of Medicine. The National Academies Press, Washington, DC (2001). https://doi.org/10.17226/10111

  2. Nirmala, B.P., Vranda, M.N.: Burden, coping and functionality of the patients with neurological disability availing treatment at neuro rehabilitation ward. Indian J. Neurosci. 3(3), 88–91 (2017)

    Google Scholar 

  3. Park, S., Loke, G., Fink, Y., Anikeeva, P.: Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 48(6), 1826–1852 (2019)

    Google Scholar 

  4. Moritz, C.T.: Now is the critical time for engineered neuroplasticity. Neurotherapeutics. 15(3), 628–634 (2018)

    Google Scholar 

  5. Chapman, C.A., Goshi, N., Seker, E.: Multifunctional neural interfaces for closed-loop control of neural activity. Adv. Funct. Mater. 28(12), 1703523 (2018). https://doi.org/10.1002/adfm.201703523

    Article  Google Scholar 

  6. Elkin, B.S., Azeloglu, E.U., Costa, K.D., Morrison Iii, B.: Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma. 24(5), 812–822 (2007). https://doi.org/10.1089/neu.2006.0169

    Article  Google Scholar 

  7. Elkin, B.S., Ilankovan, A., Morrison III, B.: Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132(1) (2009). https://doi.org/10.1115/1.4000164

  8. Sharp, A.A., Ortega, A.M., Restrepo, D., Curran-Everett, D., Gall, K.: In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans. Biomed. Eng. 56(1), 45–53 (2009). https://doi.org/10.1109/TBME.2008.2003261

    Article  Google Scholar 

  9. Karimi, A., Shojaei, A., Tehrani, P.: Mechanical properties of the human spinal cord under the compressive loading. J. Chem. Neuroanat. 86, 15–18 (2017). https://doi.org/10.1016/j.jchemneu.2017.07.004

    Article  Google Scholar 

  10. Ju, M.-S., Lin, C.-C.K., Chang, C.-T.: Researches on biomechanical properties and models of peripheral nerves – a review. J. Biomech. Sci. Eng. 12(1), 16-00678 (2017). https://doi.org/10.1299/jbse.16-00678

    Article  Google Scholar 

  11. Borschel, G.H., Kia, K.F., Kuzon Jr., W.M., Dennis, R.G.: Mechanical properties of acellular peripheral nerve. J. Surg. Res. 114(2), 133–139 (2003). https://doi.org/10.1016/s0022-4804(03)00255-5

    Article  Google Scholar 

  12. Ogneva, I.V., Lebedev, D.V., Shenkman, B.S.: Transversal stiffness and Young's modulus of single fibers from rat soleus muscle probed by atomic force microscopy. Biophys. J. 98(3), 418–424 (2010). https://doi.org/10.1016/j.bpj.2009.10.028

    Article  Google Scholar 

  13. Weltman, A., Yoo, J., Meng, E.: Flexible, penetrating brain probes enabled by advances in polymer microfabrication. Micromachines (Basel). 7(10), 180 (2016). https://doi.org/10.3390/mi7100180

    Article  Google Scholar 

  14. Maikos, J.T., Elias, R.A.I., Shreiber, D.I.: Mechanical properties of Dura mater from the rat brain and spinal cord. J. Neurotrauma. 25(1), 38–51 (2008). https://doi.org/10.1089/neu.2007.0348

    Article  Google Scholar 

  15. Choi, H.-Y.: Numerical human head model for traumatic injury assessment. KSME Int. J. 15(7), 995–1001 (2001)

    Google Scholar 

  16. McGarvey, K.A., Lee, J.M., Boughner, D.R.: Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves. Biomaterials. 5(2), 109–117 (1984). https://doi.org/10.1016/0142-9612(84)90011-5

    Article  Google Scholar 

  17. González-González, M.A., Kanneganti, A., Joshi-Imre, A., Hernandez-Reynoso, A.G., Bendale, G., Modi, R., Ecker, M., Khurram, A., Cogan, S.F., Voit, W.E.: Thin film multi-electrode softening cuffs for selective neuromodulation. Sci. Rep. 8(1), 1–15 (2018)

    Google Scholar 

  18. Szostak, K.M., Grand, L., Constandinou, T.G.: Neural interfaces for intracortical recording: requirements, fabrication methods, and characteristics. Front. Neurosci. 11, 665 (2017)

    Google Scholar 

  19. Zelechowski, M., Valle, G., Raspopovic, S.: A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J. Neuroeng. Rehabil. 17(1), 1–13 (2020)

    Google Scholar 

  20. Greiner, N., Barra, B., Schiavone, G., James, N., Falleger, F., Borgognon, S., Lacour, S., Bloch, J., Courtine, G., Capogrosso, M.: Recruitment of upper-limb motoneurons with epidural electrical stimulation of the primate cervical spinal cord. Nat. Commun. 12(435), 1–19 (2021)

    Google Scholar 

  21. Mondello, S.E., Kasten, M.R., Horner, P.J., Moritz, C.T.: Therapeutic intraspinal stimulation to generate activity and promote long-term recovery. Front. Neurosci. 8, 21 (2014)

    Google Scholar 

  22. Fernández, E., Greger, B., House, P.A., Aranda, I., Botella, C., Albisua, J., Soto-Sánchez, C., Alfaro, A., Normann, R.A.: Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front. Neuroeng. 7, 24 (2014)

    Google Scholar 

  23. Rijnbeek, E.H., Eleveld, N., Olthuis, W.: Update on peripheral nerve electrodes for closed-loop neuroprosthetics. Front. Neurosci. 12, 350 (2018)

    Google Scholar 

  24. Castagnola, E., Ansaldo, A., Maggiolini, E., Ius, T., Skrap, M., Ricci, D., Fadiga, L.: Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Front. Neuroeng. 7, 8 (2014)

    Google Scholar 

  25. Polikov, V.S., Tresco, P.A., Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods. 148, 1–18 (2005)

    Google Scholar 

  26. Agorelius, J., Tsanakalis, F., Friberg, A., Thorbergsson, P.T., Pettersson, L.M.E., Schouenborg, J.: An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation – initial evaluation in cortex cerebri of awake rats. Front. Neurosci. 9, 331 (2015)

    Google Scholar 

  27. Luan, L., Wei, X., Zhao, Z., Siegel, J.J., Potnis, O., Tuppen, C.A., Lin, S., Kazmi, S., Fowler, R.A., Holloway, S.: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3(2), e1601966 (2017)

    Google Scholar 

  28. Khodagholy, D., Gelinas, J.N., Thesen, T., Doyle, W., Devinsky, O., Malliaras, G.G., Buzsáki, G.: NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18(2), 310–315 (2015)

    Google Scholar 

  29. Zhao, Z., Li, X., He, F., Wei, X., Lin, S., Xie, C.: Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J. Neural Eng. 16(3), 035001 (2019)

    Google Scholar 

  30. Beer, F.P.: Vector mechanics for engineering. McGraw-Hill Education, New York City (1972)

    Google Scholar 

  31. Wellman, S.M., Eles, J.R., Ludwig, K.A., Seymour, J.P., Michelson, N.J., McFadden, W.E., Vazquez, A.L., Kozai, T.D.: A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28(12), 1701269 (2018)

    Google Scholar 

  32. Seo, J.H., Zhang, K., Kim, M., Zhao, D., Yang, H., Zhou, W., Ma, Z.: Flexible phototransistors based on single-crystalline silicon nanomembranes. Adv. Opt Mater. 4(1), 120–125 (2016)

    Google Scholar 

  33. Liu, D., Zhou, W., Ma, Z.: Semiconductor nanomembrane-based light-emitting and photodetecting devices. In: Photonics 2016, vol. 2, p. 40. Multidisciplinary Digital Publishing Institute (2016). https://doi.org/10.3390/photonics3020040

    Google Scholar 

  34. Viventi, J., Kim, D.-H., Vigeland, L., Frechette, E.S., Blanco, J.A., Kim, Y.-S., Avrin, A.E., Tiruvadi, V.R., Hwang, S.-W., Vanleer, A.C.: Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599 (2011)

    Google Scholar 

  35. Escabí, M.A., Read, H.L., Viventi, J., Kim, D.-H., Higgins, N.C., Storace, D.A., Liu, A.S., Gifford, A.M., Burke, J.F., Campisi, M.: A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J. Neurophysiol. 112(6), 1566–1583 (2014)

    Google Scholar 

  36. Sim, K., Rao, Z., Li, Y., Yang, D., Yu, C.: Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays. NPJ Flex. Electron. 2(1), 2 (2018)

    Google Scholar 

  37. Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K.L., Lahann, J., Kotov, N.A., Kipke, D.R.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065–1073 (2012)

    Google Scholar 

  38. Schwerdt, H.N., Kim, M.J., Amemori, S., Homma, D., Yoshida, T., Shimazu, H., Yerramreddy, H., Karasan, E., Langer, R., Graybiel, A.M.: Subcellular probes for neurochemical recording from multiple brain sites. Lab Chip. 17(6), 1104–1115 (2017). https://doi.org/10.1039/C1106LC01398H

    Article  Google Scholar 

  39. Vitale, F., Summerson, S.R., Aazhang, B., Kemere, C., Pasquali, M.: Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano. 9(4), 4465–4474 (2015)

    Google Scholar 

  40. Li, J., Song, E., Chiang, C.-H., Yu, K.J., Koo, J., Du, H., Zhong, Y., Hill, M., Wang, C., Zhang, J.: Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl. Acad. Sci. 115(41), E9542–E9549 (2018)

    Google Scholar 

  41. Fang, H., Zhao, J., Yu, K.J., Song, E., Farimani, A.B., Chiang, C.-H., Jin, X., Xue, Y., Xu, D., Du, W.: Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. 113(42), 11682–11687 (2016)

    Google Scholar 

  42. Schwerdt, H.N., Zhang, E., Kim, M.J., Yoshida, T., Stanwicks, L., Amemori, S., Dagdeviren, H.E., Langer, R., Cima, M.J., Graybiel, A.M.: Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model. Commun. Biol. 1(1), 144 (2018)

    Google Scholar 

  43. Guitchounts, G., Markowitz, J.E., Liberti, W.A., Gardner, T.J.: A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10(4), 046016 (2013)

    Google Scholar 

  44. Patel, P.R., Zhang, H., Robbins, M.T., Nofar, J.B., Marshall, S.P., Kobylarek, M.J., Kozai, T.D., Kotov, N.A., Chestek, C.A.: Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 13(6), 066002 (2016). https://doi.org/10.1088/1741-2560/13/6/066002

    Article  Google Scholar 

  45. Schwerdt, H.N., Shimazu, H., Amemori, K.-i., Amemori, S., Tierney, P.L., Gibson, D.J., Hong, S., Yoshida, T., Langer, R., Cima, M.J.: Long-term dopamine neurochemical monitoring in primates. Proc. Natl. Acad. Sci. 114(50), 13260–13265 (2017). https://doi.org/10.1073/pnas.1713756114

    Article  Google Scholar 

  46. Schwerdt, H.N., Kim, M., Karasan, E., Amemori, S., Homma, D., Shimazu, H., Yoshida, T., Langer, R., Graybiel, A.M., Cima, M.J.: Subcellular electrode arrays for multisite recording of dopamine in vivo. In: 2017 IEEE 30th international conference on micro electro mechanical systems (MEMS), pp 549–552 (2017)

    Google Scholar 

  47. Patel, P.R., Na, K., Zhang, H., Kozai, T.D., Kotov, N.A., Yoon, E., Chestek, C.A.: Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 12(4), 046009 (2015)

    Google Scholar 

  48. Constantin, C.P., Aflori, M., Damian, R.F., Rusu, R.D.: Biocompatibility of polyimides: a mini-review. Materials. 12(19), 3166 (2019)

    Google Scholar 

  49. Rossini, P.M., Micera, S., Benvenuto, A., Carpaneto, J., Cavallo, G., Citi, L., Cipriani, C., Denaro, L., Denaro, V., Di Pino, G.: Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121(5), 777–783 (2010)

    Google Scholar 

  50. Noh, K.N., Park, S.I., Qazi, R., Zou, Z., Mickle, A.D., Grajales-Reyes, J.G., Jang, K.I., Gereau IV, R.W., Xiao, J., Rogers, J.A.: Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small. 14(4), 1702479 (2018)

    Google Scholar 

  51. Ecker, M., Joshi-Imre, A., Modi, R., Frewin, C.L., Garcia-Sandoval, A., Maeng, J., Gutierrez-Heredia, G., Pancrazio, J.J., Voit, W.E.: From softening polymers to multimaterial based bioelectronic devices. Multifunct. Mater. 2(1), 012001 (2018)

    Google Scholar 

  52. Arreaga-Salas, D.E., Avendaño-Bolívar, A., Simon, D., Reit, R., Garcia-Sandoval, A., Rennaker, R.L., Voit, W.: Integration of high-charge-injection-capacity electrodes onto polymer softening neural interfaces. ACS Appl. Mater. Interfaces. 7(48), 26614–26623 (2015)

    Google Scholar 

  53. Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C.: Stimuli-responsive mechanically adaptive polymer nanocomposites. ACS Appl. Mater. Interfaces. 2(1), 165–174 (2010)

    Google Scholar 

  54. Campbell, P.K., Jones, K.E., Huber, R.J., Horch, K.W., Normann, R.A.: A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38(8), 758–768 (1991)

    Google Scholar 

  55. Wise, K.D., Angell, J.B., Starr, A.: An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. 3, 238–247 (1970)

    Google Scholar 

  56. Yoo, J.-M., Song, J.-I., Tathireddy, P., Solzbacher, F., Rieth, L.W.: Hybrid laser and reactive ion etching of Parylene-C for deinsulation of a Utah electrode array. J. Micromech. Microeng. 22(10), 105036 (2012)

    Google Scholar 

  57. Musallam, S., Bak, M.J., Troyk, P.R., Andersen, R.A.: A floating metal microelectrode array for chronic implantation. J Neurosci Methods. 160, 122–127 (2007)

    Google Scholar 

  58. Nicolelis, M.A., Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)

    Google Scholar 

  59. De Vittorio, M., Martiradonna, L., Assad, J.: Nanotechnology and neuroscience: nano-electronic, photonic and mechanical neuronal interfacing, vol. 8. Springer, New York, Heidelberg, Dordrecht, London (2014)

    Google Scholar 

  60. Kim, D.-H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y.-S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)

    Google Scholar 

  61. Minev, I.R., Musienko, P., Hirsch, A., Barraud, Q., Wenger, N., Moraud, E.M., Gandar, J., Capogrosso, M., Milekovic, T., Asboth, L.: Electronic dura mater for long-term multimodal neural interfaces. Science. 347(6218), 159–163 (2015)

    Google Scholar 

  62. Patil, A.C., Bandla, A., Liu, Y.-H., Luo, B., Thakor, N.V.: Nontransient silk sandwich for soft, conformal bionic links. Mater. Today. 32, 68–83 (2020). https://doi.org/10.1016/j.mattod.2019.08.007

    Article  Google Scholar 

  63. Kim, Y., Zhu, J., Yeom, B., Di Prima, M., Su, X., Kim, J.-G., Yoo, S.J., Uher, C., Kotov, N.A.: Stretchable nanoparticle conductors with self-organized conductive pathways. Nature. 500(7460), 59 (2013)

    Google Scholar 

  64. Kim, B.J., Meng, E.: Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2015)

    Google Scholar 

  65. Rubehn, B., Stieglitz, T.: In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials. 31(13), 3449–3458 (2010)

    Google Scholar 

  66. Wurth, S., Capogrosso, M., Raspopovic, S., Gandar, J., Federici, G., Kinany, N., Cutrone, A., Piersigilli, A., Pavlova, N., Guiet, R.: Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials. 122, 114–129 (2017)

    Google Scholar 

  67. Jiang, X., Sui, X., Lu, Y., Yan, Y., Zhou, C., Li, L., Ren, Q., Chai, X.: In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J. Neuroeng. Rehabil. 10(1), 48 (2013)

    Google Scholar 

  68. Rembado, I., Castagnola, E., Turella, L., Ius, T., Budai, R., Ansaldo, A., Angotzi, G.N., Debertoldi, F., Ricci, D., Skrap, M.: Independent component decomposition of human somatosensory evoked potentials recorded by micro-electrocorticography. Int. J. Neural Syst. 27(4), 1650052 (2017)

    Google Scholar 

  69. Petrini, F.M., Valle, G., Bumbasirevic, M., Barberi, F., Bortolotti, D., Cvancara, P., Hiairrassary, A., Mijovic, P., Sverrisson, A.Ö., Pedrocchi, A.: Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci Transl Med. 11(512), eaav8939 (2019)

    Google Scholar 

  70. Petrini, F.M., Bumbasirevic, M., Valle, G., Ilic, V., Mijović, P., Čvančara, P., Barberi, F., Katic, N., Bortolotti, D., Andreu, D.: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25(9), 1356–1363 (2019)

    Google Scholar 

  71. Tan, C.P., Craighead, H.G.: Surface engineering and patterning using parylene for biological applications. Materials. 3(3), 1803–1832 (2010)

    Google Scholar 

  72. Davis, E.M., Benetatos, N.M., Regnault, W.F., Winey, K.I., Elabd, Y.A.: The influence of thermal history on structure and water transport in Parylene C coatings. Polymer. 52(23), 5378–5386 (2011)

    Google Scholar 

  73. Meng, J.K.E.: Micromachining of Parylene C for bioMEMS Brian. Polym. Adv. Technol. 27, 564–576 (2016)

    Google Scholar 

  74. TECH P Parylene Properties. http://www.parylene.com/

  75. Brancato, L., Decrop, D., Lammertyn, J., Puers, R.: Surface nanostructuring of Parylene-C coatings for blood contacting implants. Materials. 11(7), 1109 (2018)

    Google Scholar 

  76. Gołda, M., Brzychczy-Włoch, M., Faryna, M., Engvall, K., Kotarba, A.: Oxygen plasma functionalization of parylene C coating for implants surface: nanotopography and active sites for drug anchoring. Mater. Sci. Eng. C. 33(7), 4221–4227 (2013). https://doi.org/10.1016/j.msec.2013.06.014

    Article  Google Scholar 

  77. Omnexus Comprehensive guide on Polyimide (PI). https://omnexus.specialchem.com/

  78. Lee, C., Seo, J., Shul, Y., Han, H.: Optical properties of polyimide thin films. Effect of chemical structure and morphology. Polym. J. 35(7), 578–585 (2003). https://doi.org/10.1295/polymj.35.578

    Article  Google Scholar 

  79. Xu, F.J., Zhao, J.P., Kang, E.T., Neoh, K.G.: Surface functionalization of polyimide films via chloromethylation and surface-initiated atom transfer radical polymerization. Ind. Eng. Chem. Res. 46(14), 4866–4873 (2007). https://doi.org/10.1021/ie0701367

    Article  Google Scholar 

  80. Feng, B., Xu, K., Huang, A.: Synthesis of graphene oxide/polyimide mixed matrix membranes for desalination. RSC Adv. 7(4), 2211–2217 (2017)

    Google Scholar 

  81. McKeen, L.: 3 – introduction to the physical, mechanical, and thermal properties of plastics and elastomers. In: McKeen, L. (ed.) The effect of sterilization on plastics and elastomers, 3rd edn, pp. 57–84. William Andrew Publishing, Boston (2012). https://doi.org/10.1016/B978-1-4557-2598-4.00003-4

    Chapter  Google Scholar 

  82. Xu, T., Yoo, J.H., Babu, S., Roy, S., Lee, J.-B., Lu, H.: Characterization of the mechanical behavior of SU-8 at microscale by viscoelastic analysis. J. Micromech. Microeng. 26(10), 105001 (2016). https://doi.org/10.1088/0960-1317/26/10/105001

    Article  Google Scholar 

  83. Ayad Ghannam, C.V., Bourrier, D.: Thierry Parra dielectric microwave characterization of the SU-8 thick resin used in an above-IC process. In: European microwave conference, Rome, Sept 2009 (2016)

    Google Scholar 

  84. Blagoi, G., Keller, S., Johansson, A., Boisen, A., Dufva, M.: Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl. Surf. Sci. 255(5 Part 2), 2896–2902 (2008). https://doi.org/10.1016/j.apsusc.2008.08.089

    Article  Google Scholar 

  85. Gao, Z., Henthorn, D.B., Kim, C.-S.: Enhanced wettability of an SU-8 photoresist through a photografting procedure for bioanalytical device applications. J. Micromech. Microeng. 18(4), 045013 (2008)

    Google Scholar 

  86. Roch, I., Bidaud, P., Collard, D., Buchaillot, L.: Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J. Micromech. Microeng. 13(2), 330–336 (2003). https://doi.org/10.1088/0960-1317/13/2/323

    Article  Google Scholar 

  87. Lai, J.-L., Liao, C.-J., G-DJ, S.: Using an SU-8 photoresist structure and cytochrome C thin film sensing material for a microbolometer. Sensors (Basel). 12(12), 16390–16403 (2012). https://doi.org/10.3390/s121216390

    Article  Google Scholar 

  88. Armani, D., Liu, C., Aluru, N.: Re-configurable fluid circuits by PDMS elastomer micromachining. In: Technical digest. IEEE international MEMS 99 conference. Twelfth IEEE international conference on micro electro mechanical systems (Cat. No. 99CH36291), 21 Jan, pp. 222–227 (1999). https://doi.org/10.1109/MEMSYS.1999.746817.

  89. Mark, J.E.: Polymer data handbook. Oxford University Press, New York (2009)

    Google Scholar 

  90. Zhang, J., Chen, Y., Brook, M.A.: Facile functionalization of PDMS elastomer surfaces using Thiol–Ene click chemistry. Langmuir. 29(40), 12432–12442 (2013). https://doi.org/10.1021/la403425d

    Article  Google Scholar 

  91. Frewin, C.L., Ecker, M., Joshi-Imre, A., Kamgue, J., Waddell, J., Danda, V.R., Stiller, A.M., Voit, W.E., Pancrazio, J.J.: Electrical properties of Thiol-ene-based shape memory polymers intended for flexible electronics. Polymers (Basel). 11(5), 902 (2019). https://doi.org/10.3390/polym11050902

    Article  Google Scholar 

  92. Park, J.K., Kim, S.: Droplet manipulation on a structured shape memory polymer surface. Lab Chip. 17(10), 1793–1801 (2017)

    Google Scholar 

  93. Muller, R.S., Kim, J., Cho, D.-iD.: Why is (111) Silicon a better mechanical material for MEMS? Paper presented at the Transducers ‘01 Eurosensors XV. Berlin/Heidelberg (2001)

    Google Scholar 

  94. Tsuchiya, T.: Tensile testing of silicon thin films. Fatigue Fract. Eng. Mater. Struct. 28(8), 665–674 (2005). https://doi.org/10.1111/j.1460-2695.2005.00910.x

    Article  Google Scholar 

  95. AZoM: Silicon (Si) semiconductors. https://www.azom.com/article.aspx?ArticleID=8346 (2013)

  96. Golabchi, A., Woeppel, K.M., Li, X., Lagenaur, C.F., Cui, X.T.: Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens. Bioelectron. 155, 112096 (2020)

    Google Scholar 

  97. Golabchi, A., Wu, B., Cao, B., Bettinger, C.J., Cui, X.T.: Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials. 225, 119519 (2019)

    Google Scholar 

  98. Zheng, X.S., Snyder, N.R., Woeppel, K., Barengo, J.H., Li, X., Eles, J., Kolarcik, C.L., Cui, X.T.: A superoxide scavenging coating for improving tissue response to neural implants. Acta Biomater. 99, 72–83 (2019)

    Google Scholar 

  99. de la Oliva, N., Mueller, M., Stieglitz, T., Navarro, X., del Valle, J.: On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Sci. Rep. 8(1), 5965 (2018). https://doi.org/10.1038/s41598-018-24502-z

    Article  Google Scholar 

  100. Castagnola, V., Descamps, E., Lecestre, A., Dahan, L., Remaud, J., Nowak, L.G., Bergaud, C.: Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens. Bioelectron. 67, 450–457 (2015)

    Google Scholar 

  101. Lecomte, A., Degache, A., Descamps, E., Dahan, L., Bergaud, C.: Biostability assessment of flexible parylene c-based implantable sensor in wireless chronic neural recording. Procedia Eng. 168, 189–192 (2016)

    Google Scholar 

  102. Nemani, K.V., Moodie, K.L., Brennick, J.B., Su, A., Gimi, B.: In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C. 33(7), 4453–4459 (2013)

    Google Scholar 

  103. Feng, R., Farris, R.J.: Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J. Micromech. Microeng. 13(1), 80 (2002)

    Google Scholar 

  104. Yang, X., Zhou, T., Zwang, T.J., Hong, G., Zhao, Y., Viveros, R.D., Fu, T.-M., Gao, T., Lieber, C.M.: Bioinspired neuron-like electronics. Nat. Mater. 18(5), 510–517 (2019)

    Google Scholar 

  105. Hong, G., Yang, X., Zhou, T., Lieber, C.M.: Mesh electronics: a new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 50, 33–41 (2018)

    Google Scholar 

  106. Xie, C., Liu, J., Fu, T.-M., Dai, X., Zhou, W., Lieber, C.M.: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14(12), 1286–1292 (2015)

    Google Scholar 

  107. Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices. 7(4), 281–293 (2005)

    Google Scholar 

  108. Jothimuthu, P., Carroll, A., Bhagat, A.A.S., Lin, G., Mark, J.E., Papautsky, I.: Photodefinable PDMS thin films for microfabrication applications. J. Micromech. Microeng. 19(4), 045024 (2009)

    Google Scholar 

  109. Tybrandt, K., Khodagholy, D., Dielacher, B., Stauffer, F., Renz, A.F., Buzsáki, G., Vörös, J.: High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30(15), 1706520 (2018)

    Google Scholar 

  110. Mazurek, P., Vudayagiri, S., Skov, A.L.: How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem. Soc. Rev. 48(6), 1448–1464 (2019)

    Google Scholar 

  111. Poole-Warren, L., Martens, P., Green, R.: Biosynthetic polymers for medical applications. Woodhead Publishing (2015)

    Google Scholar 

  112. Samineni, V.K., Yoon, J., Crawford, K.E., Jeong, Y.R., McKenzie, K.C., Shin, G., Xie, Z., Sundaram, S.S., Li, Y., Yang, M.Y.: Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain. 158(11), 2108 (2017)

    Google Scholar 

  113. Mickle, A.D., Won, S.M., Noh, K.N., Yoon, J., Meacham, K.W., Xue, Y., McIlvried, L.A., Copits, B.A., Samineni, V.K., Crawford, K.E.: A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 565(7739), 361 (2019)

    Google Scholar 

  114. Do, D.-H., Ecker, M., Voit, W.E.: Characterization of a thiol-ene/acrylate-based polymer for neuroprosthetic implants. ACS Omega. 2(8), 4604–4611 (2017)

    Google Scholar 

  115. González-González, M.A., Kanneganti, A., Joshi-Imre, A., Hernandez-Reynoso, A.G., Bendale, G., Modi, R., Ecker, M., Khurram, A., Cogan, S.F., Voit, W.E.: Thin film multi-electrode softening cuffs for selective neuromodulation. Sci. Rep. 8(1), 16390 (2018)

    Google Scholar 

  116. Garcia-Sandoval, A., Pal, A., Mishra, A.M., Sherman, S., Parikh, A.R., Joshi-Imre, A., Arreaga-Salas, D., Gutierrez-Heredia, G., Duran-Martinez, A.C., Nathan, J.: Chronic softening spinal cord stimulation arrays. J. Neural Eng. 15(4), 045002 (2018)

    Google Scholar 

  117. Hosseini, S.M., Rihani, R., Batchelor, B., Stiller, A.M., Pancrazio, J.J., Voit, W.E., Ecker, M.: Softening shape memory polymer substrates for bioelectronic devices with improved hydrolytic stability. Front. Mater. 5, 66 (2018)

    Google Scholar 

  118. Shanmuganathan, K., Capadona, J.R., Rowan, S.J., Weder, C.: Stimuli-responsive mechanically adaptive polymer nanocomposites. ACS Appl. Mater. Interfaces. 2(1), 165–174 (2009)

    Google Scholar 

  119. Liu, Y., Li, Y., Yang, G., Zheng, X., Zhou, S.: Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces. 7(7), 4118–4126 (2015)

    Google Scholar 

  120. Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L., Kaplan, D.L.: Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6(10), 1612 (2011)

    Google Scholar 

  121. Tao, H., Kaplan, D.L., Omenetto, F.G.: Silk materials – a road to sustainable high technology. Adv. Mater. 24(21), 2824–2837 (2012)

    Google Scholar 

  122. Lu, Q., Hu, X., Wang, X., Kluge, J.A., Lu, S., Cebe, P., Kaplan, D.L.: Water-insoluble silk films with silk I structure. Acta Biomater. 6(4), 1380–1387 (2010)

    Google Scholar 

  123. Alba, N., Du, Z., Catt, K., Kozai, T., Cui, X.: In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating. Biosensors. 5(4), 618–646 (2015)

    Google Scholar 

  124. Kozai, T.D., Alba, N.A., Zhang, H., Kotov, N.A., Gaunt, R.A., Cui, X.T.: Nanostructured coatings for improved charge delivery to neurons. In: Nanotechnology and neuroscience: nano-electronic, photonic and mechanical neuronal interfacing, pp. 71–134. Springer Science+Business Media, New York (2014)

    Google Scholar 

  125. Kolarcik, C.L., Luebben, S.D., Sapp, S.A., Hanner, J., Snyder, N., Kozai, T.D.Y., Chang, E., Nabity, J.A., Nabity, S.T., Lagenaur, C.F.: Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter. 11(24), 4847–4861 (2015)

    Google Scholar 

  126. Castagnola, E., Ansaldo, A., Maggiolini, E., Angotzi, G.N., Skrap, M., Ricci, D., Fadiga, L.: Biologically compatible neural interface to safely couple nanocoated electrodes to the surface of the brain. ACS Nano. 7(5), 3887–3895 (2013)

    Google Scholar 

  127. Abidian, M.R., Martin, D.C.: Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials. 29(9), 1273–1283 (2008)

    Google Scholar 

  128. Ansaldo, A., Castagnola, E., Maggiolini, E., Fadiga, L., Ricci, D.: Superior electrochemical performance of carbon nanotubes directly grown on sharp microelectrodes. ACS Nano. 5(3), 2206–2214 (2011)

    Google Scholar 

  129. Fan, J.A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)

    Google Scholar 

  130. Qi, D., Liu, Z., Liu, Y., Jiang, Y., Leow, W.R., Pal, M., Pan, S., Yang, H., Wang, Y., Zhang, X.: Highly stretchable, compliant, polymeric microelectrode arrays for in vivo electrophysiological interfacing. Adv. Mater. 29(40), 1702800 (2017)

    Google Scholar 

  131. Nimbalkar, S., Castagnola, E., Balasubramani, A., Scarpellini, A., Samejima, S., Khorasani, A., Boissenin, A., Thongpang, S., Moritz, C., Kassegne, S.: Ultra-capacitive carbon neural probe allows simultaneous long-term electrical stimulations and high-resolution neurotransmitter detection. Sci. Rep. 8(1), 1–14 (2018). https://doi.org/10.1038/s41598-41018-25198-x

    Article  Google Scholar 

  132. Abidian, M.R., Martin, D.C.: Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19(4), 573–585 (2009)

    Google Scholar 

  133. Yuk, H., Lu, B., Zhao, X.: Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019)

    Google Scholar 

  134. Fallegger, F., Schiavone, G., Lacour, S.P.: Conformable hybrid systems for implantable bioelectronic interfaces. Adv. Mater. 32, 1903904 (2019)

    Google Scholar 

  135. Kozai, T.D., Gugel, Z., Li, X., Gilgunn, P.J., Khilwani, R., Ozdoganlar, O.B., Fedder, G.K., Weber, D.J., Cui, X.T.: Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes. Biomaterials. 35(34), 9255–9268 (2014)

    Google Scholar 

  136. Lacour, S.P., Chan, D., Wagner, S., Li, T., Suo, Z.: Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88(20), 204103 (2006)

    Google Scholar 

  137. Zhu, B., Gong, S., Cheng, W.: Softening gold for elastronics. Chem. Soc. Rev. 48(6), 1668–1711 (2019)

    Google Scholar 

  138. Gray, D.S., Tien, J., Chen, C.S.: High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)

    Google Scholar 

  139. AZoM: Gold – properties and applications of gold. https://www.azom.com/article.aspx?ArticleID=598 (2001)

  140. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B. 6(12), 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  Google Scholar 

  141. Knake, H., Merker, J., Lupton, D., Topfer, M.: High temperature mechanical properties of the platinum group metalselastic properties of platinum, rhodium and iridium and their alloys at high temperatures. Platinum Metals Rev. 45(2), 50–100 (2001)

    Google Scholar 

  142. AZoM: Platinum (Pt) – properties, applications. https://www.azom.com/article.aspx?ArticleID=9235 (2013)

  143. Ambrosch-Draxl, C., Werner, W., Glantschnig, K.: Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data. 38, 1013–1092 (2009)

    Google Scholar 

  144. AZoM: Iridium – properties and applications. https://www.azom.com/article.aspx?ArticleID=1700 (2002)

  145. Windt, D.L., Cash Jr., W.C., Scott, M., Arendt, P., Newnam, B., Fisher, R.F., Swartzlander, A.B.: Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24 A to 1216 A. Appl. Opt. 27(2), 246–278 (1988). https://doi.org/10.1364/ao.27.000246

    Article  Google Scholar 

  146. AZoM: Tungsten. https://www.azom.com/article.aspx?ArticleID=614 (2001)

  147. Ordal, M.A., Bell, R.J., Alexander Jr., R.W., Newquist, L.A., Querry, M.R.: Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl. Opt. 27(6), 1203–1209 (1988). https://doi.org/10.1364/ao.27.001203

    Article  Google Scholar 

  148. Gong, S., Zhao, Y., Shi, Q., Wang, Y., Yap, L.W., Cheng, W.: Self-assembled ultrathin gold nanowires as highly transparent, conductive and stretchable supercapacitor. Electroanalysis. 28(6), 1298–1304 (2016)

    Google Scholar 

  149. Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B., Cheng, W.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)

    Google Scholar 

  150. Guo, C.F., Sun, T., Liu, Q., Suo, Z., Ren, Z.: Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014)

    Google Scholar 

  151. Kozai, T.D., Catt, K., Du, Z., Na, K., Srivannavit, O., Razi-ul, M.H., Seymour, J., Wise, K.D., Yoon, E., Cui, X.T.: ChronicIn vivoevaluation of PEDOT/CNT for stable neural recordings. IEEE Trans. Biomed. Eng. 63(1), 111–119 (2015)

    Google Scholar 

  152. Luo, X., Weaver, C.L., Zhou, D.D., Greenberg, R., Cui, X.T.: Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials. 32(24), 5551–5557 (2011)

    Google Scholar 

  153. Castagnola, E., Maiolo, L., Maggiolini, E., Minotti, A., Marrani, M., Maita, F., Pecora, A., Angotzi, G.N., Ansaldo, A., Fadiga, L.: Ultra-flexible and brain-conformable micro-electrocorticography device with low impedance PEDOT-carbon nanotube coated microelectrodes. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER), pp 927–930. IEEE (2013).

    Google Scholar 

  154. Cui, X.T., Zhou, D.D.: Poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 502–508 (2007)

    Google Scholar 

  155. Cui, X., Martin, D.C.: Electrochemical deposition and characterization of poly (3, 4-ethylenedioxythiophene) on neural microelectrode arrays. Sensors Actuators B Chem. 89(1–2), 92–102 (2003)

    Google Scholar 

  156. Musk, E., Neuralink: An integrated brain-machine interface platform with thousands of channels. BioRXiv. https://doi.org/10.1101/703801 (2019)

  157. Ouyang, L., Wei, B., Kuo, C.-c., Pathak, S., Farrell, B., Martin, D.C.: Enhanced PEDOT adhesion on solid substrates with electrografted P (EDOT-NH2). Sci. Adv. 3(3), e1600448 (2017)

    Google Scholar 

  158. Wei, B., Liu, J., Ouyang, L., Martin, D.C.: POSS-ProDOT crosslinking of PEDOT. J. Mater. Chem. B. 5(25), 5019–5026 (2017)

    Google Scholar 

  159. Wei, B., Liu, J., Ouyang, L., Kuo, C.-C., Martin, D.C.: Significant enhancement of PEDOT thin film adhesion to inorganic solid substrates with EDOT-acid. ACS Appl. Mater. Interfaces. 7(28), 15388–15394 (2015)

    Google Scholar 

  160. Charkhkar, H., Knaack, G.L., McHail, D.G., Mandal, H.S., Peixoto, N., Rubinson, J.F., Dumas, T.C., Pancrazio, J.J.: Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT–TFB. Acta Biomater. 32, 57–67 (2016)

    Google Scholar 

  161. Carli, S., Lambertini, L., Zucchini, E., Ciarpella, F., Scarpellini, A., Prato, M., Castagnola, E., Fadiga, L., Ricci, D.: Single walled carbon nanohorns composite for neural sensing and stimulation. Sensors Actuators B Chem. 271, 280–288 (2018)

    Google Scholar 

  162. Mitchell Taylor, I., Patel, N.A., Freedman, N.C., Castagnola, E., Cui, X.T.: Direct in vivo electrochemical detection of resting dopamine using PEDOT/CNT functionalized microelectrodes. Anal. Chem. 91, 12917–12927 (2019)

    Google Scholar 

  163. Cui, X., Hetke, J.F., Wiler, J.A., Anderson, D.J., Martin, D.C.: Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sensors Actuators A Phys. 93(1), 8–18 (2001)

    Google Scholar 

  164. Cui, X., Wiler, J., Dzaman, M., Altschuler, R.A., Martin, D.C.: In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials. 24(5), 777–787 (2003)

    Google Scholar 

  165. Guitchounts, G., Cox, D.: 64-channel carbon fiber electrode arrays for chronic electrophysiology. Sci. Rep. 10(1), 1–9 (2020)

    Google Scholar 

  166. Xin Liu, Y.L.D.K.: High-density porous graphene arrays enable detection and analysis of propagating cortical waves and spirals. Sci. Rep. 8, 17089 (2018)

    Google Scholar 

  167. Lu, Y., Lyu, H., Richardson, A.G., Lucas, T.H., Kuzum, D.: Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 6, 33526 (2016)

    Google Scholar 

  168. Goshi, N., Castagnola, E., Vomero, M., Gueli, C., Cea, C., Zucchini, E., Bjanes, D., Maggiolini, E., Moritz, C., Kassegne, S.: Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. J. Micromech. Microeng. 28(6), 065009 (2018). https://doi.org/10.1088/1361-6439/aab061

    Article  Google Scholar 

  169. Vomero, M., Castagnola, E., Ciarpella, F., Maggiolini, E., Goshi, N., Zucchini, E., Carli, S., Fadiga, L., Kassegne, S., Ricci, D.: Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)

    Google Scholar 

  170. Zestos, A.G.: Carbon nanoelectrodes for the electrochemical detection of neurotransmitters. Int. J. Electrochem. 2018, 1–19 (2018)

    Google Scholar 

  171. Puthongkham, P., Venton, B.J.: Recent advances in fast-scan cyclic voltammetry. Analyst. 145, 1087–1102 (2020)

    Google Scholar 

  172. Yang, C., Denno, M.E., Pyakurel, P., Venton, B.J.: Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta. 887, 17–37 (2015)

    Google Scholar 

  173. Vomero, M., Castagnola, E., Ciarpella, F., Maggiolini, E., Goshi, N., Zucchini, E., Carli, S., Fadiga, L., Kassegne, S., Ricci, D.: Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7(1), 1–14 (2017)

    Google Scholar 

  174. Castagnola, E., Ansaldo, A., Fadiga, L., Ricci, D.: Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording. Phys. Status Solidi B. 247(11–12), 2703–2707 (2010)

    Google Scholar 

  175. Wang, K., Fishman, H.A., Dai, H., Harris, J.S.: Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043–2048 (2006)

    Google Scholar 

  176. Thunemann, M., Lu, Y., Liu, X., Kılıç, K., Desjardins, M., Vandenberghe, M., Sadegh, S., Saisan, P.A., Cheng, Q., Weldy, K.L.: Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nat. Commun. 9(1), 2035 (2018)

    Google Scholar 

  177. Castagnola, E., Vahidi, N.W., Nimbalkar, S., Rudraraju, S., Thielk, M., Zucchini, E., Cea, C., Carli, S., Gentner, T.Q., Ricci, D.: In vivo dopamine detection and single unit recordings using intracortical glassy carbon microelectrode arrays. MRS Adv. 3(29), 1629–1634 (2018)

    Google Scholar 

  178. Lang, U., Naujoks, N., Dual, J.: Mechanical characterization of PEDOT: PSS thin films. Synth. Met. 159(5–6), 473–479 (2009)

    Google Scholar 

  179. Okuzaki, H., Ishihara, M.: Spinning and characterization of conducting microfibers. Macromol. Rapid Commun. 24(3), 261–264 (2003)

    Google Scholar 

  180. Zhang, J., Seyedin, S., Qin, S., Lynch, P.A., Wang, Z., Yang, W., Wang, X., Razal Joselito, M.: Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. J. Mater. Chem. A. 7(11), 6401–6410 (2019). https://doi.org/10.1039/C9TA00022D

    Article  Google Scholar 

  181. Yu, Z., Xia, Y., Du, D., Ouyang, J.: PEDOT:PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells. ACS Appl. Mater. Interfaces. 8(18), 11629–11638 (2016). https://doi.org/10.1021/acsami.6b00317

    Article  Google Scholar 

  182. Yang, Z., Fang, Z., Sheng, J., Ling, Z., Liu, Z., Zhu, J., Gao, P., Ye, J.: Optoelectronic evaluation and loss analysis of PEDOT:PSS/Si hybrid heterojunction solar cells. Nanoscale Res. Lett. 12(1), 26–26 (2017). https://doi.org/10.1186/s11671-016-1790-1

    Article  Google Scholar 

  183. Li, C., Xian, G.: Experimental and modeling study of the evolution of mechanical properties of PAN-based carbon fibers at elevated temperatures. Materials (Basel). 12(5), 724 (2019). https://doi.org/10.3390/ma12050724

    Article  Google Scholar 

  184. Wentzel, D., Sevostianov, I.: Electrical conductivity of unidirectional carbon fiber composites with epoxy-graphene matrix. Int. J. Eng. Sci. 130, 129–135 (2018). https://doi.org/10.1016/j.ijengsci.2018.05.012

    Article  Google Scholar 

  185. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  Google Scholar 

  186. Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E., de With, G.: Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221, 351–358 (2012). https://doi.org/10.1016/j.powtec.2012.01.024

    Article  Google Scholar 

  187. Xu, J.: Linear optical characterization of graphene structure. UWSpace (2018).

    Google Scholar 

  188. Goding, J., Gilmour, A., Martens, P., Poole-Warren, L., Green, R.: Interpenetrating conducting hydrogel materials for neural interfacing electrodes. Adv. Healtcare Mater. 6(9), 1601177 (2017)

    Google Scholar 

  189. Goding, J., Gilmour, A., Martens, P., Poole-Warren, L., Green, R.: Interpenetrating conducting hydrogel materials for neural interfacing electrodes. Adv. Healthc. Mater. 6(9), 1601177 (2017)

    Google Scholar 

  190. Castagnola, E., Maggiolini, E., Ceseracciu, L., Ciarpella, F., Zucchini, E., De Faveri, S., Fadiga, L., Ricci, D.: pHEMA encapsulated PEDOT-PSS-CNT microsphere microelectrodes for recording single unit activity in the brain. Front. Neurosci. 10, 151 (2016)

    Google Scholar 

  191. Aregueta-Robles, U.A., Woolley, A.J., Poole-Warren, L.A., Lovell, N.H., Green, R.A.: Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, 15 (2014)

    Google Scholar 

  192. Liu, Y., Liu, J., Chen, S., Lei, T., Kim, Y., Niu, S., Wang, H., Wang, X., Foudeh, A.M., Tok, J.B.-H., Bao, Z.: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019)

    Google Scholar 

  193. Heo, D.N., Song, S.-J., Kim, H.-J., Lee, Y.J., Ko, W.-K., Lee, S.J., Lee, D., Park, S.J., Zhang, L.G., Kang, J.Y.: Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomater. 39, 25–33 (2016)

    Google Scholar 

  194. Spencer, K.C., Sy, J.C., Ramadi, K.B., Graybiel, A.M., Langer, R., Cima, M.J.: Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7(1), 1952 (2017)

    Google Scholar 

  195. Lu, Y., Wang, D., Li, T., Zhao, X., Cao, Y., Yang, H., Duan, Y.Y.: Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode–neural tissue interface. Biomaterials. 30(25), 4143–4151 (2009)

    Google Scholar 

  196. Azemi, E., Lagenaur, C.F., Cui, X.T.: The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials. 32(3), 681–692 (2011)

    Google Scholar 

  197. Winter, J.O., Cogan, S.F., Rizzo, I.I.I.J.F.: Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J. Biomed. Mater. Res. Part B: Appl. Biomater. 81(2), 551–563 (2007)

    Google Scholar 

  198. Zhong, Y., Bellamkonda, R.V.: Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 1148, 15–27 (2007)

    Google Scholar 

  199. Fattahi, P., Yang, G., Kim, G., Abidian, M.R.: Biomaterials: a review of organic and inorganic biomaterials for neural interfaces (Adv. Mater. 12/2014). Adv. Mater. 26(12), 1793–1793 (2014)

    Google Scholar 

  200. Kim, D.-H., Wiler, J.A., Anderson, D.J., Kipke, D.R., Martin, D.C.: Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 6(1), 57–62 (2010)

    Google Scholar 

  201. Vitale, F., Vercosa, D.G., Rodriguez, A.V., Pamulapati, S.S., Seibt, F., Lewis, E., Yan, J.S., Badhiwala, K., Adnan, M., Royer-Carfagni, G.: Fluidic microactuation of flexible electrodes for neural recording. Nano Lett. 18(1), 326–335 (2017)

    Google Scholar 

  202. Huang, X.: Materials and applications of bioresorbable electronics. J. Semicond. 39(1), 011003209 (2018)

    MathSciNet  Google Scholar 

  203. Li, C., Guo, C., Fitzpatrick, V., Ibrahim, A., Zwierstra, M.J., Hanna, P., Lechtig, A., Nazarian, A., Lin, S.J., Kaplan, D.L.: Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 1–21 (2019)

    Google Scholar 

  204. Yu, K.J., Kuzum, D., Hwang, S.-W., Kim, B.H., Juul, H., Kim, N.H., Won, S.M., Chiang, K., Trumpis, M., Richardson, A.G.: Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782 (2016)

    Google Scholar 

  205. Hava, M.A.S.: Single-crystal silicon: electrical and optical properties. In: Springer handbook of electronic and photonic materials. Springer, Cham (2017)

    Google Scholar 

  206. Filmetrics: Refractive index of Mg – smooth. https://www.filmetrics.com/refractive-index-database/Mg+-+Smooth (2019)

  207. Palik, E.D.: Handbook of optical constants of solids, vol. 3. Elsevier, Academic Press, San Diego (1997)

    Google Scholar 

  208. Wall DA: Zinc and its uses. https://www.azom.com/article.aspx?ArticleID=749 (1998)

  209. AZoM: Molybdenum (Mo) – properties, applications. https://www.azom.com/article.aspx?ArticleID=616 (2001)

  210. Koh, L.-D., Cheng, Y., Teng, C.-P., Khin, Y.-W., Loh, X.-J., Tee, S.-Y., Low, M., Ye, E., Yu, H.-D., Zhang, Y.-W., Han, M.-Y.: Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 46, 86–110 (2015). https://doi.org/10.1016/j.progpolymsci.2015.02.001

    Article  Google Scholar 

  211. Lee, J.H., Kwak, H.W., Park, M.H., Hwang, J., Kim, J.W., Jang, H.W., Jin, H.-J., Lee, W.H.: Understanding hydroscopic properties of silk fibroin and its use as a gate-dielectric in organic field-effect transistors. Org. Electron. 59, 213–219 (2018). https://doi.org/10.1016/j.orgel.2018.05.012

    Article  Google Scholar 

  212. Perotto, G., Zhang, Y., Naskar, D., Patel, N., Kaplan, D.L., Kundu, S.C., Omenetto, F.G.: The optical properties of regenerated silk fibroin films obtained from different sources. Appl. Phys. Lett. 111(10), 103702 (2017). https://doi.org/10.1063/1.4998950

    Article  Google Scholar 

  213. Qi, Y., Wang, H., Wei, K., Yang, Y., Zheng, R.Y., Kim, I.S., Zhang, K.Q.: A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18(3), 237 (2017). https://doi.org/10.3390/ijms18030237

    Article  Google Scholar 

  214. Warwicker, J.: The crystal structure of silk fibroin. Acta Crystallogr. 7(8–9), 565–573 (1954). https://doi.org/10.1107/S0365110X54001867

    Article  Google Scholar 

  215. Rivnay, J., Wang, H., Fenno, L., Deisseroth, K., Malliaras, G.G.: Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3(6), e1601649 (2017). https://doi.org/10.1126/sciadv.1601649

    Article  Google Scholar 

  216. Oh, Y., Park, C., Kim, D.H., Shin, H., Kang, Y.M., DeWaele, M., Lee, J., Min, H.-K., Blaha, C.D., Bennet, K.E.: Monitoring in vivo changes in tonic extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal. Chem. 88(22), 10962–10970 (2016). https://doi.org/10.1021/acs.analchem.6b02605

    Article  Google Scholar 

  217. Di Flumeri, G., Aricò, P., Borghini, G., Sciaraffa, N., Di Florio, A., Babiloni, F.: The dry revolution: evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors. 19(6), 1365 (2019)

    Google Scholar 

  218. Norton, J.J., Lee, D.S., Lee, J.W., Lee, W., Kwon, O., Won, P., Jung, S.-Y., Cheng, H., Jeong, J.-W., Akce, A.: Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. 112(13), 3920–3925 (2015)

    Google Scholar 

  219. Grozea, C., Voinescu, C.D., Fazli, S.: Bristle-sensors – low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 8(2), 025008 (2011)

    Google Scholar 

  220. Gargiulo, G., Calvo, R.A., Bifulco, P., Cesarelli, M., Jin, C., Mohamed, A., van Schaik, A.: A new EEG recording system for passive dry electrodes. Clin. Neurophysiol. 121(5), 686–693 (2010)

    Google Scholar 

  221. Myers, A.C., Huang, H., Zhu, Y.: Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv. 5(15), 11627–11632 (2015)

    Google Scholar 

  222. Ferrari, L.M., Sudha, S., Tarantino, S., Esposti, R., Bolzoni, F., Cavallari, P., Cipriani, C., Mattoli, V., Greco, F.: Ultraconformable temporary tattoo electrodes for electrophysiology. Adv. Sci. 5(3), 1700771 (2018)

    Google Scholar 

  223. Leuthardt, E.C., Schalk, G., Moran, D., Ojemann, J.G.: The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery. 59(1), 1 (2006)

    Google Scholar 

  224. Leuthardt, E.C., Freudenberg, Z., Bundy, D., Roland, J.: Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces. Neurosurg. Focus. 27(1), E10 (2009)

    Google Scholar 

  225. Schwartz, A.B.: Cortical neural prosthetics. Annu. Rev. Neurosci. 27, 487–507 (2004)

    Google Scholar 

  226. Degenhart, A.D., Eles, J., Dum, R., Mischel, J.L., Smalianchuk, I., Endler, B., Ashmore, R.C., Tyler-Kabara, E.C., Hatsopoulos, N.G., Wang, W.: Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 13(4), 046019 (2016)

    Google Scholar 

  227. Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L., Schwartz, A.B.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 381(9866), 557–564 (2013)

    Google Scholar 

  228. Maiolo, L., Polese, D., Convertino, A.: The rise of flexible electronics in neuroscience, from materials selection to in vitro and in vivo applications. Adv. Phys.: X. 4(1), 1664319 (2019)

    Google Scholar 

  229. Pazzini, L., Polese, D., Weinert, J.F., Maiolo, L., Maita, F., Marrani, M., Pecora, A., Sanchez-Vives, M.V., Fortunato, G.: An ultra-compact integrated system for brain activity recording and stimulation validated over cortical slow oscillations in vivo and in vitro. Sci. Rep. 8(1), 16717 (2018)

    Google Scholar 

  230. Yi Qiang, P.A., Seo, K.J., Culaclii, S., Hogan, V., Zhao, X., Zhong, Y., Han, X., Wang, P.-M., Lo, Y.-K., Li, Y., Patel, H.A., Huang, Y., Sambangi, A., Chu, J.S.V., Liu, W., Fagiolini, M., Fang, H.: Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci. Adv. 4(9), eaat0626 (2018)

    Google Scholar 

  231. Wonryung Lee, D.K., Matsuhisa, N., Nagase, M., Sekino, M., Malliaras, G.G., Yokota, T., Someya, T.: Transparent, conformable, active multielectrode array using organic electrochemical transistors. PNAS. 114(40), 10554–10559 (2017)

    Google Scholar 

  232. Kuzum, D., Takano, H., Shim, E., Reed, J.C., Juul, H., Richardson, A.G., De Vries, J., Bink, H., Dichter, M.A., Lucas, T.H.: Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014)

    Google Scholar 

  233. Park, D.-W., Ness, J.P., Brodnick, S.K., Esquibel, C., Novello, J., Atry, F., Baek, D.-H., Kim, H., Bong, J., Swanson, K.I.: Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice. ACS Nano. 12(1), 148–157 (2018)

    Google Scholar 

  234. Ledochowitsch, P., Yazdan-Shahmorad, A., Bouchard, K., Diaz-Botia, C., Hanson, T., He, J.-W., Seybold, B., Olivero, E., Phillips, E., Blanche, T.: Strategies for optical control and simultaneous electrical readout of extended cortical circuits. J. Neurosci. Methods. 256, 220–231 (2015)

    Google Scholar 

  235. Lu, Y., Liu, X., Hattori, R., Ren, C., Zhang, X., Komiyama, T., Kuzum, D.: Ultralow impedance graphene microelectrodes with high optical transparency for simultaneous deep two-photon imaging in transgenic mice. Adv. Funct. Mater. 28(31), 1800002 (2018)

    Google Scholar 

  236. Park, D.-W., Ness, J.P., Brodnick, S.K., Esquibel, C., Novello, J., Atry, F., Baek, D.-H., Kim, H., Bong, J., Swanson, K.I., Suminski, A.J., Otto, K.J., Pashaie, R., Williams, J.C., Ma, Z.: Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice. ACS Nano. 12, 148–−157 (2018)

    Google Scholar 

  237. Lee, W., Kim, D., Matsuhisa, N., Nagase, M., Sekino, M., Malliaras, G.G., Yokota, T., Someya, T.: Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl. Acad. Sci. 114(40), 10554–10559 (2017)

    Google Scholar 

  238. Lee, H., Bellamkonda, R.V., Sun, W., Levenston, M.E.: Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2(4), 81 (2005)

    Google Scholar 

  239. Rousche, P.J., Pellinen, D.S., Pivin, D.P., Williams, J.C., Vetter, R.J., Kipke, D.R.: Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3), 361–371 (2001)

    Google Scholar 

  240. Chi Lu, S.P., Richner, T.J., Derry, A., Brown, I., Hou, C., Rao, S., Kang, J., Moritz, C.T., Fink, Y., Anikeeva, P.: Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3(3), e1600955 (2017)

    Google Scholar 

  241. DeWaele, M., Oh, Y., Park, C., Kang, Y.M., Shin, H., Blaha, C.D., Bennet, K.E., Kim, I.Y., Lee, K.H., Jang, D.P.: A baseline drift detrending technique for fast scan cyclic voltammetry. Analyst. 142(22), 4317–4321 (2017)

    Google Scholar 

  242. Park, S., Guo, Y., Jia, X., Choe, H.K., Grena, B., Kang, J., Park, J., Lu, C., Canales, A., Chen, R.: One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20(4), 612–619 (2017)

    Google Scholar 

  243. Liu, J., Fu, T.-M., Cheng, Z., Hong, G., Zhou, T., Jin, L., Duvvuri, M., Jiang, Z., Kruskal, P., Xie, C., Suo, Z., Fang, Y., Lieber, C.M.: Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015)

    Google Scholar 

  244. Liu, J.: Syringe injectable electronics. In: Biomimetics Through Nanoelectronics, pp. 65–93. Springer (2018)

    Google Scholar 

  245. Du, Z.J., Kolarcik, C.L., Kozai, T.D.Y., Luebben, S.D., Sapp, S.A., Zheng, X.S., Nabity, J.A., Cui, X.T.: Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 53, 46–58 (2017)

    Google Scholar 

  246. Zhang, Y., Mickle, A.D., Gutruf, P., McIlvried, L.A., Guo, H., Wu, Y., Golden, J.P., Xue, Y., Grajales-Reyes, J.G., Wang, X., Krishnan, S., Xie, Y., Peng, D., Su, C.-J., Zhang, F., Reeder, J.T., Vogt, S.K., Huang, Y., Rogers, J.A., Gereau, R.W.: Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Science Advances. 5(7), eaaw5296 (2019). https://doi.org/10.1126/sciadv.aaw5296

    Article  Google Scholar 

  247. Canales, A., Jia, X., Froriep, U.P., Koppes, R.A., Tringides, C.M., Selvidge, J., Lu, C., Hou, C., Wei, L., Fink, Y.: Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277 (2015)

    Google Scholar 

  248. Lo, M.-c., Wang, S., Singh, S., Damodaran, V.B., Kaplan, H.M., Kohn, J., Shreiber, D.I., Zahn, J.D.: Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion. Biomed. Microdevices. 17(2), 34 (2015)

    Google Scholar 

  249. Felix, S.H., Shah, K.G., Tolosa, V.M., Sheth, H.J., Tooker, A.C., Delima, T.L., Jadhav, S.P., Frank, L.M., Pannu, S.S.: Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive. J. Vis. Exp. 79, e50609 (2013)

    Google Scholar 

  250. Joo, H.R., Fan, J.L., Chen, S., Pebbles, J.A., Liang, H., Chung, J.E., Yorita, A.M., Tooker, A.C., Tolosa, V.M., Geaghan-Breiner, C.: A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain. J. Neural Eng. 16(6), 066021 (2019)

    Google Scholar 

  251. Lee, J.M., Hong, G., Lin, D., Schuhmann Jr., T.G., Sullivan, A.T., Viveros, R.D., Park, H.-G., Lieber, C.M.: Nanoenabled direct contact interfacing of syringe-injectable mesh electronics. Nano Lett. 19(8), 5818–5826 (2019)

    Google Scholar 

  252. Szikszay, T., Hall, T., von Piekartz, H.: In vivo effects of limb movement on nerve stretch, strain, and tension: a systematic review. J. Back Musculoskelet. Rehabil. 30(6), 1171–1186 (2017). https://doi.org/10.3233/BMR-169720

    Article  Google Scholar 

  253. Romero-Ortega, M.: Peripheral nerves, anatomy and physiology of. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of computational neuroscience, pp. 1–5. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7320-6_214-1

    Chapter  Google Scholar 

  254. Johnson Chad, R.P.D., Barr Roger, C.P.D., Klein Stephen, M.M.D.: A computer model of electrical stimulation of peripheral nerves in regional anesthesia. Anesthesiol.: J. Am. Soc. Anesthesiol. 106(2), 323–330 (2007)

    Google Scholar 

  255. Tyler, D.J., Durand, D.M.: Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 294–303 (2002). https://doi.org/10.1109/tnsre.2002.806840

    Article  Google Scholar 

  256. González-González, M.A., Kanneganti, A., Joshi-Imre, A., Hernandez-Reynoso, A.G., Bendale, G., Modi, R., Ecker, M., Khurram, A., Cogan, S.F., Voit, W.E., Romero-Ortega, M.I.: Thin film multi-electrode softening cuffs for selective neuromodulation. Sci. Rep. 8(1), 16390 (2018). https://doi.org/10.1038/s41598-018-34566-6

    Article  Google Scholar 

  257. Navarro, X., Lago, N., Vivo, M., Yoshida, K., Koch, K.P., Poppendieck, W., Micera, S.: Neurobiological evaluation of thin-film longitudinal intrafascicular electrodes as a peripheral nerve interface. In: 2007 IEEE 10th international conference on rehabilitation robotics, 13–15 June 2007. pp. 643–649 (2007). https://doi.org/10.1109/ICORR.2007.4428492

  258. Wang, J., Thow, X.Y., Wang, H., Lee, S., Voges, K., Thakor, N.V., Yen, S.-C., Lee, C.: A highly selective 3D Spiked Ultraflexible Neural (SUN) interface for decoding peripheral nerve sensory information. Adv. Healthc. Mater. 7(5), 1700987 (2018). https://doi.org/10.1002/adhm.201700987

    Article  Google Scholar 

  259. Zheng, X., Woeppel, K.M., Griffith, A.Y., Chang, E., Looker, M.J., Fisher, L.E., Clapsaddle, B.J., Cui, X.T.: Soft conducting elastomer for peripheral nerve interface. Adv. Healthc. Mater. 8(9), 1801311 (2019). https://doi.org/10.1002/adhm.201801311

    Article  Google Scholar 

  260. Musick, K.M., Rigosa, J., Narasimhan, S., Wurth, S., Capogrosso, M., Chew, D.J., Fawcett, J.W., Micera, S., Lacour, S.P.: Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait. Sci. Rep. 5, 14363 (2015)

    Google Scholar 

  261. Clark, G.A., Ledbetter, N.M., Warren, D.J., Harrison, R.R.: Recording sensory and motor information from peripheral nerves with Utah slanted electrode arrays. In: 2011 Annual international conference of the IEEE engineering in medicine and biology society, pp. 4641–4644. IEEE (2011)

    Google Scholar 

  262. Wark, H.A.C., Mathews, K.S., Normann, R.A., Fernandez, E.: Behavioral and cellular consequences of high-electrode count Utah arrays chronically implanted in rat sciatic nerve. J. Neural Eng. 11(4), 046027 (2014). https://doi.org/10.1088/1741-2560/11/4/046027

    Article  Google Scholar 

  263. Christensen, M., Pearce, S., Ledbetter, N., Warren, D., Clark, G., Tresco, P.: The foreign body response to the Utah slant electrode array in the cat sciatic nerve. Acta Biomater. 10(11), 4650–4660 (2014)

    Google Scholar 

  264. Campbell, A., Wu, C.: Chronically implanted intracranial electrodes: tissue reaction and electrical changes. Micromachines (Basel). 9(9), 430 (2018). https://doi.org/10.3390/mi9090430

    Article  Google Scholar 

  265. Ordonez, J.S., Pikov, V., Wiggins, H., Patten, C., Stieglitz, T., Rickert, J., Schuettler, M.: Cuff electrodes for very small diameter nerves – prototyping and first recordings in vivo. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, 26–30 Aug. 2014, pp. 6846–6849 (2014). https://doi.org/10.1109/EMBC.2014.6945201

  266. Yu, H., Xiong, W., Zhang, H., Wang, W., Li, Z.: A Parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J. Microelectromech. Syst. 23(5), 1025–1035 (2014). https://doi.org/10.1109/JMEMS.2014.2333733

    Article  Google Scholar 

  267. Meyer, J.U., Stieglitz, T., Beutel, H.È., Schuettler, M.: Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdevices. 2(4), 283–294 (2000). https://doi.org/10.1023/A:1009955222114

    Article  Google Scholar 

  268. Zhang, Y., Zheng, N., Cao, Y., Wang, F., Wang, P., Ma, Y., Lu, B., Hou, G., Fang, Z., Liang, Z., Yue, M., Li, Y., Chen, Y., Fu, J., Wu, J., Xie, T., Feng, X.: Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5(4), eaaw1066 (2019). https://doi.org/10.1126/sciadv.aaw1066

    Article  Google Scholar 

  269. Mizisin, A.W.A.P.: The blood-nerve barrier: structure and functional significance. In: The blood-brain and other neural barriers (2010). https://doi.org/10.1007/978-1-60761-938-3_6

  270. de la Oliva, N., Navarro, X., del Valle, J.: Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J. Biomed. Mater. Res. A. 106(3), 746–757 (2018). https://doi.org/10.1002/jbm.a.36274

    Article  Google Scholar 

  271. Myllymaa, S., Myllymaa, K., Korhonen, H., Lammi, M.J., Tiitu, V., Lappalainen, R.: Surface characterization and in vitro biocompatibility assessment of photosensitive polyimide films. Colloids Surf. B: Biointerfaces. 76(2), 505–511 (2010)

    Google Scholar 

  272. Goda, T., Konno, T., Takai, M., Ishihara, K.: Photoinduced phospholipid polymer grafting on Parylene film: Advanced lubrication and antibiofouling properties. Colloids Surf. B: Biointerfaces. 54(1), 67–73 (2007)

    Google Scholar 

  273. Jones, J.A., Chang, D.T., Meyerson, H., Colton, E., Kwon, I.K., Matsuda, T., Anderson, J.M.: Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater.Res. Part A. 83(3), 585–596 (2007)

    Google Scholar 

  274. Ghosh, I., Konar, J., Bhowmick, A.K.: Surface properties of chemically modified polyimide films. J. Adhes. Sci. Technol. 11(6), 877–893 (1997)

    Google Scholar 

  275. Chang, T.Y., Yadav, V.G., De Leo, S., Mohedas, A., Rajalingam, B., Chen, C.-L., Selvarasah, S., Dokmeci, M.R., Khademhosseini, A.: Cell and protein compatibility of parylene-C surfaces. Langmuir. 23(23), 11718–11725 (2007)

    Google Scholar 

  276. Stieglitz, T., Beutel, H., Meyer, J.U.: A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors Actuators A Phys. 60(1), 240–243 (1997). https://doi.org/10.1016/S0924-4247(97)01494-5

    Article  Google Scholar 

  277. MacEwan, M.R., Zellmer, E.R., Wheeler, J.J., Burton, H., Moran, D.W.: Regenerated sciatic nerve axons stimulated through a chronically implanted macro-sieve electrode. Front. Neurosci. 10, 557–557 (2016). https://doi.org/10.3389/fnins.2016.00557

    Article  Google Scholar 

  278. Srinivasan, A., Tahilramani, M., Bentley, J.T., Gore, R.K., Millard, D.C., Mukhatyar, V.J., Joseph, A., Haque, A.S., Stanley, G.B., English, A.W., Bellamkonda, R.V.: Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees. Biomaterials. 41, 151–165 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.035

    Article  Google Scholar 

  279. Fernandez-Leon, J.A., Parajuli, A., Franklin, R., Sorenson, M., Felleman, D.J., Hansen, B.J., Hu, M., Dragoi, V.: A wireless transmission neural interface system for unconstrained non-human primates. J. Neural Eng. 12(5), 056005 (2015)

    Google Scholar 

  280. Shepherd, R.K., Villalobos, J., Burns, O., Nayagam, D.A.X.: The development of neural stimulators: a review of preclinical safety and efficacy studies. J. Neural Eng. 15(4), 041004 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisa Castagnola or X. Tracy Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Castagnola, E., Zheng, X.S., Cui, X.T. (2023). Flexible and Soft Materials and Devices for Neural Interface. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_5

Download citation

Publish with us

Policies and ethics