Skip to main content

Brain-Machine Interfaces: From Restoring Sensorimotor Control to Augmenting Cognition

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Brain-machine interface (BMI) technologies developed at the turn of the last century were expected to not only decode the intention to move, but to use that signal to stimulate back into the nervous system to restore movement to the patient’s own body. As the field moves to achieve these goals, two important events have spawned parallel pathways that have changed our fundamental idea about how to proceed and, at the same time, allowed unprecedented insight into brain function. First, studies in human subjects have made clear that BMI will not simply restore function, but rather, patients will learn to use the technology in a way that assists what the user wants to do rather than replace function. Second, rapid advances in neurotechnology in the past 20 years have shown BMI to be an invaluable tool to study brain function and suggest it will be applicable to restoring and perhaps even augmenting cognition. This chapter will provide some historical context to the development of BMI, and then review recent advances to understand the representation of information in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMI:

Brain-machine interfaces

DBS:

Deep brain stimulations

FA:

Factor analysis

FES:

Functional electrical stimulations

GLM:

General linear model

GPFA:

Gaussian-process factor analysis

Hz:

Hertz

ICA:

Independent components analysis

MHE:

Moving horizon estimation

MPC:

Mode; predictive control

PCA:

Principal components analysis

PD:

Parkinson’s disease

PWA:

Piecewise affine

References

  1. Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), E42 (2003)

    Google Scholar 

  2. Chapin, J.K., Moxon, K.A., Markowitz, R.S., Nicolelis, M.A.: Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2(7), 664–670 (1999)

    Google Scholar 

  3. Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J.C., Velliste, M., Boninger, M.L., Schwartz, A.B.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 381(9866), 557–564 (2013)

    Google Scholar 

  4. Fitzsimmons, N.A., Drake, W., Hanson, T.L., Lebedev, M.A., Nicolelis, M.A.: Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J. Neurosci. 27(21), 5593–5602 (2007)

    Google Scholar 

  5. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., Smagt, P.V.D., Donoghue, J.P., van der Smagt, P.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485(7398), 1–17 (2012)

    Google Scholar 

  6. Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., Schwartz, A.B.: Cortical control of a prosthetic arm for self-feeding. Nature. 453(7198), 1098–1101 (2008)

    Google Scholar 

  7. Sherrington, C.S.: The Integrative Action of the Nervous System. Yale University Press, New Haven (1906)

    Google Scholar 

  8. Kubie, L.S.: A theoretical application to social neurological problems of the properties of excitation waves which move in closed circuits. Brain J. Neurol. 53, 166–177 (1930)

    Google Scholar 

  9. Hebb, D.O.: The Organization of Behavior; A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  10. Lashley, K.S.: ‘In Search of the Engram’: Physiological Mechanisms in Animal Behavior (Society’s Symposium IV), pp. 454–482. Academic Press (1950)

    Google Scholar 

  11. John, E.R.: Switchboard versus statistical theories of learning and memory. Science. 177(4052), 850 (1972)

    Google Scholar 

  12. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. 1943. Bull. Math. Biol. 52(1–2), 99–115 (1990).; Discussion 173–197

    MATH  Google Scholar 

  13. de No, R.L.: Transmission of impulses through cranial motor nuclei. J. Neurophysiol. 2(5), 402–464 (1939)

    Google Scholar 

  14. Mountcastle, V.B.: Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20(4), 408–434 (1957)

    Google Scholar 

  15. Szentagothai, J.: The 'module-concept' in cerebral cortex architecture. Brain Res. 95(2–3), 475–496 (1975)

    Google Scholar 

  16. Eccles, J.C.: The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience. 6(10), 1839–1856 (1981)

    Google Scholar 

  17. John, E.R.: Mechanisms of Memory. Academic Press, New York, Inc. (1967)

    Google Scholar 

  18. Gerstein, G.L., Perkel, D.H.: Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science. 164(3881), 828–830 (1969)

    Google Scholar 

  19. Gerstein, G.L., Perkel, D.H., Subramanian, K.N.: Identification of functionally related neural assemblies. Brain Res. 140(1), 43–62 (1978)

    Google Scholar 

  20. Evarts, E.V.: Pyramidal tract activity associated with a conditioned hand movement in the monkey. J. Neurophysiol. 29(6), 1011–1027 (1966)

    Google Scholar 

  21. Evarts, E.V.: Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31(1), 14–27 (1968)

    Google Scholar 

  22. Jasper, H.H., Radmussen, T.: Studies of clinical and electrical responses to deep temporal stimulation in men with some considerations of functional anatomy. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 316–334 (1958)

    Google Scholar 

  23. Humphrey, D.R., Schmidt, E.M., Thompson, W.D.: Predicting measures of motor performance from multiple cortical spike trains. Science. 170(3959), 758–762 (1970)

    Google Scholar 

  24. Fetz, E.E.: Operant conditioning of cortical unit activity. Science. 163(3870), 955–958 (1969)

    Google Scholar 

  25. Kennedy, P.R., Bakay, R.A.: Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 9(8), 1707–1711 (1998)

    Google Scholar 

  26. Kennedy, P.R., Bakay, R.A., Moore, M.M., Adams, K., Goldwaithe, J.: Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8(2), 198–202 (2000)

    Google Scholar 

  27. Kennedy, P.R., Kirby, M.T., Moore, M.M., King, B., Mallory, A.: Computer control using human intracortical local field potentials. IEEE Trans. Rehabil. Eng. 12(3), 339–344 (2004)

    Google Scholar 

  28. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Google Scholar 

  29. Serruya, M.D., Hastopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P.: Instant neural control of a movement signal. Nature. 416(6877), 141–142 (2002)

    Google Scholar 

  30. Taylor, D.M., Tillery, S.I., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science. 296(5574), 1829–1832 (2002)

    Google Scholar 

  31. Ifft, P.J., Shokur, S., Li, Z., Lebedev, M.A., Nicolelis, M.A.: A brain-machine interface enables bimanual arm movements in monkeys. Sci. Transl. Med. 5(210), 210ra154 (2013)

    Google Scholar 

  32. Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Churchland, M.M., Kaufman, M.T., Kao, J.C., Ryu, S.I., Shenoy, K.V.: A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15(12), 1752–1757 (2012)

    Google Scholar 

  33. Hwang, E.J., Bailey, P.M., Andersen, R.a.: Volitional control of neural activity relies on the natural motor repertoire. Curr. Biol. 23(5), 353–361 (2013)

    Google Scholar 

  34. Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain-computer interface. Nature. 442(7099), 195–198 (2006)

    Google Scholar 

  35. Orsborn, A.L., Moorman, H.G., Overduin, S.A., Shanechi, M.M., Dimitrov, D.F., Carmena, J.M.: Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron. 82(6), 1380–1393 (2014)

    Google Scholar 

  36. Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.L.: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 1, 361–365 (2000)

    Google Scholar 

  37. Shanechi, M.M., Hu, R.C., Powers, M., Wornell, G.W., Brown, E.N., Williams, Z.M.: Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat. Neurosci. 15(12), 1715–1722 (2012)

    Google Scholar 

  38. Musallam, S., Corneil, B.D., Greger, B., Scherberger, H., Andersen, R.A.: Cognitive control signals for neural prosthetics. Science. 305(5681), 258–262 (2004)

    Google Scholar 

  39. Hauschild, M., Mulliken, G.H., Fineman, I., Loeb, G.E., Andersen, R.A.: Cognitive signals for brain-machine interfaces in posterior parietal cortex include continuous 3D trajectory commands. Proc. Natl. Acad. Sci. U. S. A. 109(42), 17075–17080 (2012)

    Google Scholar 

  40. Mulliken, G.H., Musallam, S., Andersen, R.A.: Decoding trajectories from posterior parietal cortex ensembles. J. Neurosci. 28(48), 12913–12926 (2008)

    Google Scholar 

  41. Moxon, K.A., Foffani, G.: Brain-machine interfaces beyond neuroprosthetics. Neuron. 86(1), 55–67 (2015)

    Google Scholar 

  42. Manohar, A., Flint, R.D., Knudsen, E.B., Moxon, K.A.: Decoding hindlimb movement for a brain machine interface after a complete spinal transection. PLoS One. 7(12), e52173–e52173 (2012)

    Google Scholar 

  43. Scaglione, A., Foffani, G., Moxon, K.A.: Spike count, spike timing and temporal information in the cortex of awake, freely moving rats. J. Neural Eng. 11(4), 046022 (2014)

    Google Scholar 

  44. Scaglione, A., Moxon, K.A., Aguilar, J., Foffani, G.: Trial-to-trial variability in the responses of neurons carries information about stimulus location in the rat whisker thalamus. Proc. Natl. Acad. Sci. U. S. A. 108(36), 14956–14961 (2011)

    Google Scholar 

  45. Shamir, M.: Emerging principles of population coding: in search for the neural code. Curr. Opin. Neurobiol. 25, 140–148 (2014)

    Google Scholar 

  46. Bieri, K.W., Bobbitt, K.N., Colgin, L.L.: Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron. 82(3), 670–681 (2014)

    Google Scholar 

  47. Lisman, J.E., Jensen, O.: The theta-gamma neural code. Neuron. 77(6), 1002–1016 (2013)

    Google Scholar 

  48. Ratte, S., Hong, S., De Schutter, E., Prescott, S.A.: Impact of neuronal properties on network coding: Roles of spike initiation dynamics and robust synchrony transfer. Neuron. 78(5), 758–772 (2013)

    Google Scholar 

  49. Singer, W.: Neuronal synchrony: A versatile code for the definition of relations? Neuron. 24(1), 49–65 (1999)., 111–125

    Google Scholar 

  50. Engelhard, B., Ozeri, N., Israel, Z., Bergman, H., Vaadia, E.: Inducing gamma oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron. 77(2), 361–375 (2013)

    Google Scholar 

  51. Rouse, A.G., Williams, J.J., Wheeler, J.J., Moran, D.W.: Cortical adaptation to a chronic micro-electrocorticographic brain computer interface. J. Neurosci. 33(4), 1326–1330 (2013)

    Google Scholar 

  52. Sakurai, Y., Takahashi, S.: Conditioned enhancement of firing rates and synchrony of hippocampal neurons and firing rates of motor cortical neurons in rats. Eur. J. Neurosci. 37(4), 623–639 (2013)

    Google Scholar 

  53. Angelakis, E., Stathopoulou, S., Frymiare, J.L., Green, D.L., Lubar, J.F., Kounios, J.: EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 21(1), 110–129 (2007)

    Google Scholar 

  54. Brunner, C., Scherer, R., Graimann, B., Supp, G., Pfurtscheller, G.: Online control of a brain-computer interface using phase synchronization. I.E.E.E. Trans. Biomed. Eng. 53(12 Pt 1), 2501–2506 (2006)

    Google Scholar 

  55. Fetz, E.E., Finocchio, D.V.: Correlations between activity of motor cortex cells and arm muscles during operantly conditioned response patterns. Exp. Brain Res. 23(3), 217–240 (1975)

    Google Scholar 

  56. Knudsen, E.B., Powers, M.E., Moxon, K.A.: Dissociating movement from movement timing in the rat primary motor cortex. J. Neurosci. 34(47), 15576–15586 (2014)

    Google Scholar 

  57. Lebedev, M.A., Carmena, J.M., O'Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.: Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25(19), 4681–4693 (2005)

    Google Scholar 

  58. Jarosiewicz, B., Chase, S.M.S.M., Fraser, G.W.G.W., Velliste, M., Kass, R.E.R.E., Schwartz, A.B.B.: Functional network reorganization during learning in a brain-computer interface paradigm. Proc. Natl. Acad. Sci. U. S. A. 105(49), 19486–19491 (2008)

    Google Scholar 

  59. Chestek, C.A., Batista, A.P., Santhanam, G., Yu, B.M., Afshar, A., Cunningham, J.P., Gilja, V., Ryu, S.I., Churchland, M.M., Shenoy, K.V.: Single-neuron stability during repeated reaching in macaque premotor cortex. J. Neurosci. 27(40), 10742–10750 (2007)

    Google Scholar 

  60. Rokni, U., Richardson, A.G., Bizzi, E., Seung, H.S.: Motor learning with unstable neural representations. Neuron. 54(4), 653–666 (2007)

    Google Scholar 

  61. Ganguly, K., Carmena, J.M.: Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7(7), 1–13 (2009)

    Google Scholar 

  62. Sadtler, P.T., Quick, K.M., Golub, M.D., Chase, S.M., Ryu, S.I., Tyler-Kabara, E.C., Yu, B.M., Batista, A.P.: Neural constraints on learning. Nature. 512(7515), 423–426 (2014)

    Google Scholar 

  63. Ganguly, K., Dimitrov, D.F., Wallis, J.D., Carmena, J.M.: Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci. 14(5), 662–667 (2011)

    Google Scholar 

  64. Arduin, P.-J., Frégnac, Y., Shulz, D.E., Ego-Stengel, V.: “Master” neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task. J. Neurosci. 33(19), 8308–8320 (2013)

    Google Scholar 

  65. Clancy, K.B., Koralek, A.C., Costa, R.M., Feldman, D.E., Carmena, J.M.: Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17(6), 807–809 (2014)

    Google Scholar 

  66. Nicolelis, M.A., Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)

    Google Scholar 

  67. Kao, J.C., Nuyujukian, P., Ryu, S.I., Churchland, M.M., Cunningham, J.P., Shenoy, K.V.: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6, 7759 (2015)

    Google Scholar 

  68. Michaels, J.A., Dann, B., Scherberger, H.: Neural population dynamics during reaching are better explained by a dynamical system than representational tuning. PLoS Comput. Biol. 12(11), e1005175 (2016)

    Google Scholar 

  69. Cunningham, J.P., Byron, M.Y.: Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17(11), 1500 (2014)

    Google Scholar 

  70. Aghagolzadeh, M., Truccolo, W.: Inference and decoding of motor cortex low-dimensional dynamics via latent state-space models. IEEE Trans. Neural Syst. Rehabil. Eng. 24(2), 272–282 (2016)

    Google Scholar 

  71. Kao, J.C., Ryu, S.I., Shenoy, K.V.: Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces. Sci. Rep. 7(1), 7395 (2017)

    Google Scholar 

  72. Yang, Y., Connolly, A.T., Shanechi, M.M.: A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation. J. Neural Eng. 15(6), 066007 (2018)

    Google Scholar 

  73. Vidaurre, C., Sannelli, C., Muller, K.-R., Blankertz, B.: Machine-learning-based coadaptive calibration for brain-computer interfaces. Neural Comput. 23(3), 791–816 (2011)

    MATH  Google Scholar 

  74. Cunningham, J.P., Yu, B.M.: Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17(11), 1500–1509 (2014)

    Google Scholar 

  75. Yu, B.M., Cunningham, J.P., Santhanam, G., Ryu, S.I., Shenoy, K.V., Sahani, M.: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102(1), 614–635 (2009)

    Google Scholar 

  76. Kihlberg, J.K., Herson, J.H., Schotz, W.E.: Square root transformation revisited. J. R. Stat. Soc. Ser. C (Appl. Stat.). 21(1), 76–81 (1972)

    Google Scholar 

  77. Churchland, M.M., Yu, B.M., Ryu, S.I., Santhanam, G., Shenoy, K.V.: Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26(14), 3697–3712 (2006)

    Google Scholar 

  78. Tolhurst, D.J., Movshon, J.A., Dean, A.F.: The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23(8), 775–785 (1983)

    Google Scholar 

  79. Everitt, B.: An Introduction to Latent Variable Models. Chapman and Hall, London (1984)

    MATH  Google Scholar 

  80. Churchland, M.M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen, M.R., Corrado, G.S., Newsome, W.T., Clark, A.M., Hosseini, P., Scott, B.B., Bradley, D.C., Smith, M.A., Kohn, A., Movshon, J.A., Armstrong, K.M., Moore, T., Chang, S.W., Snyder, L.H., Lisberger, S.G., Priebe, N.J., Finn, I.M., Ferster, D., Ryu, S.I., Santhanam, G., Sahani, M., Shenoy, K.V.: Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nat. Neurosci. 13(3), 369–378 (2010)

    Google Scholar 

  81. Shenoy, K.V., Sahani, M., Churchland, M.M.: Cortical control of arm movements: A dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013)

    Google Scholar 

  82. Athalye, V.R., Ganguly, K., Costa, R.M., Carmena, J.M.: Emergence of coordinated neural dynamics underlies neuroprosthetic learning and skillful control. Neuron. 93(4), 955–970 (2017).e955

    Google Scholar 

  83. Musall, S., Urai, A.E., Sussillo, D., Churchland, A.K.: Harnessing behavioral diversity to understand neural computations for cognition. Curr. Opin. Neurobiol. 58, 229–238 (2019)

    Google Scholar 

  84. Pandarinath, C., Ames, K.C., Russo, A.A., Farshchian, A., Miller, L.E., Dyer, E.L., Kao, J.C.: Latent factors and dynamics in motor cortex and their application to brain-machine interfaces. J. Neurosci. 38(44), 9390–9401 (2018)

    Google Scholar 

  85. Ljung, L.: System Identification. Springer, Boston (1998)

    MATH  Google Scholar 

  86. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT Press, Cambridge (2011)

    Google Scholar 

  87. Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.: Verifying the safety of a flight-critical system. In: Bjørner, N., de Boer, F. (eds) Book Verifying the safety of a flight-critical system (2015)

    Google Scholar 

  88. Camacho, E.F., Alba, C.B.: Model Predictive Control. Springer Science and Business Media, London (2013)

    Google Scholar 

  89. Systems, P.C.F.L.A.H: Borrelli, Francesco; Bemporad, Alberto; Morari, Manfred. Predictive Control for Linear and Hybrid System. Cambridge University Press (2017)

    Google Scholar 

  90. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems Approach. Mit Press, Cambridge (2016)

    MATH  Google Scholar 

  91. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer, Boston (2017)

    MATH  Google Scholar 

  92. Isidori, A.: Nonlinear Control Systems. Springer Science and Business Media, Boston (2013)

    MATH  Google Scholar 

  93. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control. 45(10), 1864–1876 (2000)

    MathSciNet  MATH  Google Scholar 

  94. Ferrari-Trecate, G., Cuzzola, F.A., Mignone, D., Morari, M.: Analysis of discrete-time piecewise affine and hybrid systems. Automatica. 38(12), 2139–2146 (2002)

    MathSciNet  MATH  Google Scholar 

  95. Heemels, W.P., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica. 37(7), 1085–1109 (2001)

    MATH  Google Scholar 

  96. Yordanov, B., Tumova, J., Cerna, I., Barnat, J.A.B., Calin: Temporal logic control of discrete-time piecewise affine systems. IEEE Trans. Autom. Control. 57(6), 1491–1504 (2012)

    MathSciNet  MATH  Google Scholar 

  97. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to piecewise affine system identification. IEEE Trans. Autom. Control. 50(10), 1567–1580 (2005)

    MathSciNet  MATH  Google Scholar 

  98. Ohlsson, H., Ljung, L.: Identification of switched linear regression models using sum-of-norms regularization. Automatica. 49(4), 1045–1050 (2013)

    MathSciNet  MATH  Google Scholar 

  99. De Schutter, B., van den Boom, T.J.: MPC for continuous piecewise-affine systems. Syst. Control Lett. 52(3–4), 179–192 (2004)

    MathSciNet  MATH  Google Scholar 

  100. Zeilinger, M.N., Jones, C.N., Morari, M.: Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization. IEEE Trans. Autom. Control. 56(7), 1524–1534 (2011)

    MathSciNet  MATH  Google Scholar 

  101. Papachristos, C., Alexis, K., Tzes, A.: Technical activities execution with a tiltrotor uas employing explicit model predictive control. IFAC Proc. Volumes. 47(3), 11036–11042 (2014)

    Google Scholar 

  102. Chen, G., Kong, Z.: Data-driven approximate abstraction for black-box piecewise affine systems. In: Data-Driven Approximate Abstraction for Black-Box Piecewise Affine Systems. Annual American Control Conference (ACC), 786 (2018)

    Google Scholar 

  103. Hajiahmadi, M., Haddad, J., De Schutter, B., Geroliminis, N.: Optimal hybrid perimeter and switching plans control for urban traffic networks. IEEE Trans. Control Syst. Technol. 23(2), 464–478 (2015)

    Google Scholar 

  104. Chaves, M., Tournier, L., Gouze, J.-L.: Comparing Boolean and piecewise affine differential models for genetic networks. Acta Biotheor. 58(2–3), 217–232 (2010)

    Google Scholar 

  105. Pasquini, M., Angeli, D.: On the robust existence of piecewise quadratic Lyapunov functions for hybrid models of gene regulatory networks. ArXiv, abs/1906.12216 (2019)

    Google Scholar 

  106. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012)

    MATH  Google Scholar 

  107. Bishop, C.M.: Pattern Recognition and Machine Learning. Spring Science + Business Media, Springer NY (2006)

    MATH  Google Scholar 

  108. Farina, M., Ferrari-Trecate, G., Scattolini, R.: Moving-horizon partition-based state estimation of large-scale systems. Automatica. 46(5), 910–918 (2010)

    MathSciNet  MATH  Google Scholar 

  109. Haber, A., Verhaegen, M.: Moving horizon estimation for large-scale interconnected systems. IEEE Trans. Autom. Control. 58(11), 2834–2847 (2013)

    MathSciNet  MATH  Google Scholar 

  110. Li, D., Xi, Y.: The feedback robust MPC for LPV systems with bounded rates of parameter changes. IEEE Trans. Autom. Control. 55(2), 503–507 (2010)

    MathSciNet  MATH  Google Scholar 

  111. Farina, M., Scattolini, R.: Tube-based robust sampled-data MPC for linear continuous-time systems. Automatica. 48(7), 1473–1476 (2012)

    MathSciNet  MATH  Google Scholar 

  112. Wu, W., Black, M.J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J.P.: Modeling and decoding motor cortical activity using a switching Kalman filter. I.E.E.E. Trans. Biomed. Eng. 51(6), 933–942 (2004)

    Google Scholar 

  113. Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J.: Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput. 18(1), 80–118 (2006)

    MathSciNet  MATH  Google Scholar 

  114. Wu, W., Hatsopoulos, N.G.: Real-time decoding of nonstationary neural activity in motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 16(3), 213–222 (2008)

    Google Scholar 

  115. Wu, W., Shaikhouni, A., Donoghue, J.P., Black, M.J.: Closed-loop neural control of cursor motion using a Kalman filter. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6, 4126–4129 (2004)

    Google Scholar 

  116. Ethier, C., Gallego, J.A., Miller, L.E.: Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Curr. Opin. Neurobiol. 33, 95–102 (2015)

    Google Scholar 

  117. Moritz, C.T., Perlmutter, S.I., Fetz, E.E.: Direct control of paralysed muscles by cortical neurons. Nature. 456(7222), 639–642 (2008)

    Google Scholar 

  118. Ethier, C., Oby, E.R., Bauman, M.J., Miller, L.E.: Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature. 485(7398), 368–371 (2012)

    Google Scholar 

  119. Knudsen, E.B., Moxon, K.A.: Restoration of Hindlimb movements after complete spinal cord injury using brain-controlled functional electrical stimulation. Front. Neurosci. 11, 715 (2017)

    Google Scholar 

  120. Nishimura, Y., Perlmutter, S.I., Eaton, R.W., Fetz, E.E.: Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron. 80(5), 1301–1309 (2013)

    Google Scholar 

  121. Bamford, J.A., Mushahwar, V.K.: Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog. Brain Res. 194, 227–239 (2011)

    Google Scholar 

  122. Wenger, N., Moraud, E.M., Raspopovic, S., Bonizzato, M., DiGiovanna, J., Musienko, P., Morari, M., Micera, S., Courtine, G.: Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci. Transl. Med. 6(255), 255ra133 (2014)

    Google Scholar 

  123. O'Doherty, J.E., Lebedev, M.A., Li, Z., Nicolelis, M.A.: Virtual active touch using randomly patterned intracortical microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20(1), 85–93 (2012)

    Google Scholar 

  124. Tabot, G.A., Dammann, J.F., Berg, J.A., Tenore, F.V., Boback, J.L., Vogelstein, R.J., Bensmaia, S.J.: Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl. Acad. Sci. U. S. A. 110(45), 18279–18284 (2013)

    Google Scholar 

  125. Moxon, K.A., Oliviero, A., Aguilar, J., Foffani, G.: Cortical reorganization after spinal cord injury: Always for good? Neuroscience. 283, 78–94 (2014)

    Google Scholar 

  126. Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Moraud, E.M., Mignardot, J.B., Buse, N., Gandar, J., Barraud, Q., Xing, D., Rey, E., Duis, S., Jianzhong, Y., Ko, W.K., Li, Q., Detemple, P., Denison, T., Micera, S., Bezard, E., Bloch, J., Courtine, G.: A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 539(7628), 284–288 (2016)

    Google Scholar 

  127. Fagg, A.H., Hatsopoulos, N.G., de Lafuente, V., Moxon, K.A., Nemati, S., Rebesco, J.M., Romo, R., Solla, S.A., Reimer, J., Tkach, D., Pohlmeyer, E.A., Miller, L.E.: Biomimetic brain machine interfaces for the control of movement. J. Neurosci. 27(44), 11842–11846 (2007)

    Google Scholar 

  128. Graziano, A., Foffani, G., Knudsen, E.B., Shumsky, J., Moxon, K.A.: Passive exercise of the hind limbs after complete thoracic transection of the spinal cord promotes cortical reorganization. PLoS One. 8(1), e54350 (2013)

    Google Scholar 

  129. Kao, T., Shumsky, J.S., Murray, M., Moxon, K.A.: Exercise induces cortical plasticity after neonatal spinal cord injury in the rat. J. Neurosci. 29(23), 7549–7557 (2009)

    Google Scholar 

  130. Truccolo, W., Friehs, G.M., Donoghue, J.P., Hochberg, L.R.: Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J. Neurosci. 28(5), 1163–1178 (2008)

    Google Scholar 

  131. Foffani, G., Uzcategui, Y.G., Gal, B., Menendez de la Prida, L.: Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron. 55(6), 930–941 (2007)

    Google Scholar 

  132. Zijlmans, M., Jiruska, P., Zelmann, R., Leijten, F.S., Jefferys, J.G., Gotman, J.: High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71(2), 169–178 (2012)

    Google Scholar 

  133. Marsden, J.F., Limousin-Dowsey, P., Ashby, P., Pollak, P., Brown, P.: Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. Brain: J. Neurol. 124(Pt 2), 378–388 (2001)

    Google Scholar 

  134. Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A.M., Pellegrini, M., Locatelli, M., Moxon, K.A., Villani, R.M.: Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol. 189(2), 369–379 (2004)

    Google Scholar 

  135. Grasse, D.W., Karunakaran, S., Moxon, K.A.: Neuronal synchrony and the transition to spontaneous seizures. Exp. Neurol. 248, 72–84 (2013)

    Google Scholar 

  136. Karunakaran, S., Grasse, D.W., Moxon, K.A.: Changes in network dynamics during status epilepticus. Exp. Neurol. 234(2), 454–465 (2012)

    Google Scholar 

  137. Karunakaran, S., Grasse, D.W., Moxon, K.A.: Role of CA3 theta-modulated interneurons during the transition to spontaneous seizures. Exp. Neurol. 283(Pt A), 341–352 (2016)

    Google Scholar 

  138. Misra, A., Long, X., Sperling, M.R., Sharan, A.D., Moxon, K.A.: Increased neuronal synchrony prepares mesial temporal networks for seizures of neocortical origin. Epilepsia. 59(3), 636–649 (2018)

    Google Scholar 

  139. Geller, E.B.: Responsive neurostimulation: Review of clinical trials and insights into focal epilepsy. Epilepsy Behav. 88s, 11–20 (2018)

    Google Scholar 

  140. Arakeri, T.J., Hasse, B.A., Fuglevand, A.J.: Object discrimination using electrotactile feedback. J. Neural Eng. 15(4), 1–12 (2018)

    Google Scholar 

  141. Caldwell, D.J., Cronin, J.A., Wu, J., Weaver, K.E., Ko, A.L., Rao, R.P.N., Ojemann, J.G.: Direct stimulation of somatosensory cortex results in slower reaction times compared to peripheral touch in humans. Sci. Rep. 9, 1–11 (2019)

    Google Scholar 

  142. Cronin, J.A., Wu, J., Collins, K.L., Sarma, D., Rao, R.P.N., Ojemann, J.G., Olson, J.D.: Task-specific somatosensory feedback via cortical stimulation in humans. IEEE Trans. Haptics. 9(4), 515–522 (2016)

    Google Scholar 

  143. Kramer, D.R., Lamorie-Foote, K., Barbaro, M., Lee, M., Peng, T., Gogia, A., Liu, C.Y., Kellis, S.S., Lee, B.: Functional frequency discrimination from cortical somatosensory stimulation in humans. Front. Neurosci. 13, 1–9 (2019)

    Google Scholar 

  144. Salas, M.A., Bashford, L., Kellis, S., Jafari, M., Jo, H.C., Kramer, D., Shanield, K., Pejsa, K., Lee, B., Liu, C.Y., Andersen, R.A.: Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. elife. 7, 1–11 (2018)

    Google Scholar 

  145. Sritharan, S.Y., Richardson, A.G., Weigand, P.K., Planell-Mendez, I., Liu, X.L., Zhu, H.H., Zhang, M.L., Van der Spiegel, J., Lucas, T.H.: Somatosensory encoding with cuneate nucleus microstimulation: Detection of artificial stimuli. In: Patton, J., Barbieri, R., Ji, J., Jabbari, E., Dokos, S., Mukkamala, R., Guiraud, D., Jovanov, E., Dhaher, Y., Panescu, D., Vangils, M., Wheeler, B., Dhawan, A.P. (eds.) 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4719–4722. IEEE (2016)

    Google Scholar 

  146. Weiss, J.M., Flesher, S.N., Franklin, R., Collinger, J.L., Gaunt, R.A.: Artifact-free recordings in human bidirectional brain-computer interfaces. J. Neural Eng. 16(1) (2019)

    Google Scholar 

  147. Kramer, D.R., Kellis, S., Barbaro, M., Salas, M.A., Nune, G., Liu, C.Y., Andersen, R.A., Lee, B.: Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans. J. Clin. Neurosci. 63, 116–121 (2019)

    Google Scholar 

  148. Waldert, S.: Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? Front. Neurosci. 10, 1–4 (2016)

    Google Scholar 

  149. Jackson, A., Zimmermann, J.B.: Neural interfaces for the brain and spinal cord – Restoring motor function. Nat. Rev. Neurol. 8(12), 690–699 (2012)

    Google Scholar 

  150. Guggenmos, D.J., Azin, M., Barbay, S., Mahnken, J.D., Dunham, C., Mohseni, P., Nudo, R.J.: Restoration of function after brain damage using a neural prosthesis. Proc. Natl. Acad. Sci. U. S. A. 110(52), 21177–21182 (2013)

    Google Scholar 

  151. Hampson, R.E., Song, D., Opris, I., Santos, L.M., Shin, D.C., Gerhardt, G.A., Marmarelis, V.Z., Berger, T.W., Deadwyler, S.A.: Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J. Neural Eng. 10(6), 066013 (2013)

    Google Scholar 

  152. Ngo, H.V., Claussen, J.C., Born, J., Molle, M.: Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 22(1), 22–31 (2013)

    Google Scholar 

  153. Potter, S.M., El Hady, A., Fetz, E.E.: Closed-loop neuroscience and neuroengineering. Front. Neural Circuits. 8, 115 (2014)

    Google Scholar 

  154. Lee, D.J., Izadi, A., Melnik, M., Seidl, S., Echeverri, A., Shahlaie, K., Gurkoff, G.G.: Stimulation of the medial septum improves performance in spatial learning following pilocarpine-induced status epilepticus. Epilepsy Res. 130, 53–63 (2017)

    Google Scholar 

  155. Moxon, K.A., Shahlaie, K., Girgis, F., Saez, I., Kennedy, J., Gurkoff, G.G.: From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol. Dis. 129, 169–181 (2019)

    Google Scholar 

  156. Izadi, A., Pevzner, A., Lee, D.J., Ekstrom, A.D., Shahlaie, K., Gurkoff, G.G.: Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats. Brain Stimul. 12(3), 735–742 (2019)

    Google Scholar 

  157. Burke, J.F., Merkow, M.B., Jacobs, J., Kahana, M.J., Zaghloul, K.A.: Brain computer interface to enhance episodic memory in human participants. Front. Hum. Neurosci. 8, 1055 (2014)

    Google Scholar 

  158. Hampson, R.E., Song, D., Robinson, B.S., Fetterhoff, D., Dakos, A.S., Roeder, B.M., She, X., Wicks, R.T., Witcher, M.R., Couture, D.E., Laxton, A.W., Munger-Clary, H., Popli, G., Sollman, M.J., Whitlow, C.T., Marmarelis, V.Z., Berger, T.W., Deadwyler, S.A.: Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. J. Neural Eng. 15(3), 036014 (2018)

    Google Scholar 

  159. Jamieson, M., Cullen, B., McGee-Lennon, M., Brewster, S., Evans, J.J.: The efficacy of cognitive prosthetic technology for people with memory impairments: a systematic review and meta-analysis. Neuropsychol. Rehabil. 24(3–4), 419–444 (2014)

    Google Scholar 

  160. Solis, M.: Committing to memory: Memory prosthetics show promise in helping those with neurodegenerative disorders. IEEE Pulse. 8(1), 33–37 (2017)

    Google Scholar 

  161. Ezzyat, Y., Wanda, P.A., Levy, D.F., Kadel, A., Aka, A., Pedisich, I., Sperling, M.R., Sharan, A.D., Lega, B.C., Burks, A., Gross, R.E., Inman, C.S., Jobst, B.C., Gorenstein, M.A., Davis, K.A., Worrell, G.A., Kucewicz, M.T., Stein, J.M., Gorniak, R., Das, S.R., Rizzuto, D.S., Kahana, M.J.: Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat. Commun. 9(1), 365 (2018)

    Google Scholar 

  162. Cavanagh, J.F., Frank, M.J.: Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18(8), 414–421 (2014)

    Google Scholar 

  163. Cavanagh, J.F., Frank, M.J., Klein, T.J., Allen, J.J.: Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage. 49(4), 3198–3209 (2010)

    Google Scholar 

  164. Womelsdorf, T., Johnston, K., Vinck, M., Everling, S.: Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proc. Natl. Acad. Sci. U. S. A. 107(11), 5248–5253 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karen Moxon or Jochen Ditterich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moxon, K., Kong, Z., Ditterich, J. (2023). Brain-Machine Interfaces: From Restoring Sensorimotor Control to Augmenting Cognition. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_36

Download citation

Publish with us

Policies and ethics