Skip to main content

Motor BMIs Have Entered the Clinical Realm

  • Reference work entry
  • First Online:
Handbook of Neuroengineering
  • 116 Accesses

Abstract

Brain-machine interfaces (BMI) are now entering the clinical realm, where signals measured from the human brain are utilized to provide innovative therapies and enhance quality of life for individuals affected by neurological diseases and injury. Motor BMIs describe devices driven by signals from the motor system, which includes regions both on the surface and in deeper portions of the brain. These devices can be used to restore or enhance function for those with deficits in motor output as well as to provide therapy for individuals with deficits in part of the motor circuit function. Implanted motor BMIs, particularly those based on electrocorticography (ECoG) and deep brain stimulation (DBS) technologies, are burgeoning as a result of advances in wireless, implanted technologies in humans, and are based on foundational advances developed in research laboratories. Motor BMIs have now enabled an individual with amyotrophic lateral sclerosis (ALS) to communicate with the external world in a novel manner, and are being explored for closed-loop, adaptive deep brain stimulation therapies. In these therapies, electrical stimulation of deep brain structures used to treat movement disorders such as Parkinson’s disease and essential tremor is modulated in real time to provide more efficient stimulation with potentially fewer side effects. Future advances will be based upon further hardware and algorithmic developments, co-adaptive strategies that utilize learning both by the human brain and the implanted device, and integration with stimulation to provide more effective therapy for an expanding repertoire of movement disorders, restore sensation, and modulate cortical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BMI:

Brain-machine interface

CM:

Centromedian region of thalamus

CM-PF:

Centromedian-parafascicular complex

CT:

Computed tomography

DBS:

Deep brain stimulation

ECoG:

Electrocorticography

EEG:

Electroencephalography

ERP:

Event related potential

ET:

Essential tremor

FDA:

Food and Drug Administration

FES:

Functional electrical stimulation

fMRI:

Functional magnetic resonance imaging

fNIRS:

Functional near-infrared spectroscopy

GPe:

Globus pallidus externus

GPi:

Globus pallidus internus

Hz:

Hertz

IDE:

Investigational device exemption

iEEG:

Intracranial electroencephalography

LFP:

Local field potential

MEG:

Magnetoencephalography

MRI:

Magnetic resonance imaging

NHP:

Nonhuman primate

OCD:

Obsessive compulsive disorder

PAC:

Phase amplitude coupling

PD:

Parkinson’s disease

SCI:

Spinal cord injury

sEEG:

Stereoelectroencephalography

STN:

Subthalamic nucleus

Vim:

Ventral intermediate nucleus of thalamus

VNS:

Vagus nerve stimulation

VTA:

Volume of tissue activated

References

  1. Thakor, N.V.: Translating the brain-machine interface. Sci. Transl. Med. 5, 210ps17 (2013). https://doi.org/10.1126/scitranslmed.3007303

    Article  Google Scholar 

  2. Leuthardt, E.C., Schalk, G., Moran, D., Ojemann, J.G.: The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery. 59, 1–13 (2006). https://doi.org/10.1227/01.NEU.0000221506.06947.AC

    Article  Google Scholar 

  3. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012). https://doi.org/10.1038/nrn3241

    Article  Google Scholar 

  4. Pesaran, B., Vinck, M., Einevoll, G.T., et al.: Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat. Neurosci. 21, 903–919 (2018). https://doi.org/10.1038/s41593-018-0171-8

    Article  Google Scholar 

  5. Armour, B.S., Courtney-Long, E.A., Fox, M.H., et al.: Prevalence and causes of paralysis – United States, 2013. Am. J. Public Health. 106, 1855–1857 (2016). https://doi.org/10.2105/AJPH.2016.303270

    Article  Google Scholar 

  6. Lloyd-Jones, D., Adams, R.J., Brown, T.M., et al.: Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation. 121, e46–e215 (2010). https://doi.org/10.1161/CIRCULATIONAHA.109.192667

    Article  Google Scholar 

  7. Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., et al.: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429 (2008). https://doi.org/10.1016/j.apmr.2007.11.005

    Article  Google Scholar 

  8. Arthur, K.C., Calvo, A., Price, T.R., et al.: Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms12408

    Article  Google Scholar 

  9. Anderson, K.D.: Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma. 21, 1371–1383 (2004). https://doi.org/10.1089/neu.2004.21.1371

    Article  Google Scholar 

  10. Snoek, G.J., Ijzerman, M.J., Hermens, H.J., et al.: Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics. Spinal Cord. 42, 526–532 (2004). https://doi.org/10.1038/sj.sc.3101638

    Article  Google Scholar 

  11. Collinger, J.L., Boninger, M.L., Bruns, T.M., et al.: Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J. Rehabil. Res. Dev. 50, 145 (2013). https://doi.org/10.1682/JRRD.2011.11.0213

    Article  Google Scholar 

  12. Lahr, J., Schwartz, C., Heimbach, B., et al.: Invasive brain–machine interfaces: a survey of paralyzed patients’ attitudes, knowledge and methods of information retrieval. J. Neural Eng. 12, 043001 (2015). https://doi.org/10.1088/1741-2560/12/4/043001

    Article  Google Scholar 

  13. Dorsey, E.R., Constantinescu, R., Thompson, J.P., et al.: Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 68, 384–386 (2007). https://doi.org/10.1212/01.wnl.0000247740.47667.03

    Article  Google Scholar 

  14. Jerbi, K., Vidal, J.R., Mattout, J., et al.: Inferring hand movement kinematics from MEG, EEG and intracranial EEG: from brain-machine interfaces to motor rehabilitation. ITBM-RBM. 32, 8–18 (2011). https://doi.org/10.1016/j.irbm.2010.12.004

    Article  Google Scholar 

  15. LaFleur, K., Cassady, K., Doud, A., et al.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10, 046003 (2013). https://doi.org/10.1088/1741-2560/10/4/046003

    Article  Google Scholar 

  16. Hillman, E.M.C.: Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014). https://doi.org/10.1146/annurev-neuro-071013-014111

    Article  Google Scholar 

  17. Lee, J.H., Ryu, J., Jolesz, F.A., et al.: Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450, 1–6 (2009). https://doi.org/10.1016/j.neulet.2008.11.024

    Article  Google Scholar 

  18. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4, 219–226 (2007). https://doi.org/10.1088/1741-2560/4/3/007

    Article  Google Scholar 

  19. Fukuma, R., Yanagisawa, T., Saitoh, Y., et al.: Real-time control of a neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci. Rep. 6, 21781 (2016). https://doi.org/10.1038/srep21781

    Article  Google Scholar 

  20. Waldert, S., Preissl, H., Demandt, E., et al.: Hand movement direction decoded from MEG and EEG. J. Neurosci. 28, 1000–1008 (2008). https://doi.org/10.1523/JNEUROSCI.5171-07.2008

    Article  Google Scholar 

  21. Collinger, J.L., Wodlinger, B., Downey, J.E., et al.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 381, 557–564 (2013). https://doi.org/10.1016/S0140-6736(12)61816-9

    Article  Google Scholar 

  22. Hochberg, L.R., Bacher, D., Jarosiewicz, B., et al.: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 485, 372–375 (2012). https://doi.org/10.1038/nature11076

    Article  Google Scholar 

  23. Jarosiewicz, B., Sarma, A.A., Bacher, D., et al.: Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 7, 313ra179 (2015). https://doi.org/10.1126/scitranslmed.aac7328

    Article  Google Scholar 

  24. Ball, T., Kern, M., Mutschler, I., et al.: Signal quality of simultaneously recorded invasive and non-invasive EEG. NeuroImage. 46, 708–716 (2009). https://doi.org/10.1016/j.neuroimage.2009.02.028

    Article  Google Scholar 

  25. Kanth, S.T., Ray, S.: Electrocorticogram (ECoG) is highly informative in primate visual cortex. J. Neurosci. 40, 2430–2444 (2020). https://doi.org/10.1523/JNEUROSCI.1368-19.2020

    Article  Google Scholar 

  26. Kellis, S., Sorensen, L., Darvas, F., et al.: Multi-scale analysis of neural activity in humans: implications for micro-scale electrocorticography. Clin. Neurophysiol. 127, 591–601 (2016). https://doi.org/10.1016/j.clinph.2015.06.002

    Article  Google Scholar 

  27. Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al.: Principles of Neural Science. McGraw-Hill, New York (2013)

    Google Scholar 

  28. Zhang, Y., Larcher, K.M.H., Misic, B., Dagher, A.: Anatomical and functional organization of the human substantia nigra and its connections. elife. 6, 1–23 (2017). https://doi.org/10.7554/eLife.26653

    Article  Google Scholar 

  29. Bostan, A.C., Strick, P.L.: The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018). https://doi.org/10.1038/s41583-018-0002-7

    Article  Google Scholar 

  30. Lanciego, J.L., Luquin, N., Obeso, J.A.: Functional neuroanatomy of the basal ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012). https://doi.org/10.1101/cshperspect.a009621

    Article  Google Scholar 

  31. Herrero, M.T., Barcia, C., Navarro, J.M.: Functional anatomy of thalamus and basal ganglia. Childs Nerv. Syst. 18, 386–404 (2002). https://doi.org/10.1007/s00381-002-0604-1

    Article  Google Scholar 

  32. Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., et al.: Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci. 23, S8–S19 (2000). https://doi.org/10.1016/S1471-1931(00)00028-8

    Article  Google Scholar 

  33. Lehericy, S., Benali, H., Van de Moortele, P.-F., et al.: Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl. Acad. Sci. U. S. A. 102, 12566–12571 (2005). https://doi.org/10.1073/pnas.0502762102

    Article  Google Scholar 

  34. Ackerley, R., Kavounoudias, A.: The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia. 79, 192–205 (2015). https://doi.org/10.1016/j.neuropsychologia.2015.06.024

    Article  Google Scholar 

  35. Saal, H.P., Bensmaia, S.J.: Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 37, 689–697 (2014). https://doi.org/10.1016/j.tins.2014.08.012

    Article  Google Scholar 

  36. Sanes, J.N., Donoghue, J.P.: Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415 (2000). https://doi.org/10.1146/annurev.neuro.23.1.393

    Article  Google Scholar 

  37. Brown, C.E., Aminoltejari, K., Erb, H., et al.: In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J. Neurosci. 29, 1719–1734 (2009). https://doi.org/10.1523/JNEUROSCI.4249-08.2009

    Article  Google Scholar 

  38. Darian-Smith, C.: Plasticity of somatosensory function during learning, disease and injury. In: The Senses: A Comprehensive Reference, pp. 259–297. Elsevier, Amsterdam/Boston (2008)

    Chapter  Google Scholar 

  39. Krakauer, J.W., Hadjiosif, A.M., Xu, J., et al.: Motor learning. Compr. Physiol. 9, 613–663 (2019). https://doi.org/10.1002/cphy.c170043

    Article  Google Scholar 

  40. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4, R32–R57 (2007). https://doi.org/10.1088/1741-2560/4/2/R03

    Article  Google Scholar 

  41. Bensch, M., Martens, S., Halder, S., et al.: Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography. J. Neural Eng. 11, 026006 (2014). https://doi.org/10.1088/1741-2560/11/2/026006

    Article  Google Scholar 

  42. Buzsaki, G.: Neuronal oscillations in cortical networks. Science. 304, 1926–1929 (2004). https://doi.org/10.1126/science.1099745

    Article  Google Scholar 

  43. Bruns, A.: Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J. Neurosci. Methods. 137, 321–332 (2004). https://doi.org/10.1016/j.jneumeth.2004.03.002

    Article  Google Scholar 

  44. Miller, K.J., Leuthardt, E.C., Schalk, G., et al.: Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007). https://doi.org/10.1523/JNEUROSCI.3886-06.2007

    Article  Google Scholar 

  45. Canolty, R.T., Edwards, E., Dalal, S.S., et al.: High gamma power is phase-locked to theta oscillations in human neocortex. Science. 313, 1626–1628 (2006). https://doi.org/10.1126/science.1128115

    Article  Google Scholar 

  46. Miller, K.J., Shenoy, P., den Nijs, M., et al.: Beyond the gamma band: the role of high-frequency features in movement classification. IEEE Trans. Biomed. Eng. 55, 1634–1637 (2008). https://doi.org/10.1109/TBME.2008.918569

    Article  Google Scholar 

  47. Hermes, D., Nguyen, M., Winawer, J.: Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biol. 15(7), e2001461 (2017)

    Article  Google Scholar 

  48. Wander, J.D., Blakely, T., Miller, K.J., et al.: Distributed cortical adaptation during learning of a brain-computer interface task. Proc. Natl. Acad. Sci. U. S. A. 110, 10818–10823 (2013). https://doi.org/10.1073/pnas.1221127110

    Article  Google Scholar 

  49. Brown, P.: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18, 357–363 (2003). https://doi.org/10.1002/mds.10358

    Article  Google Scholar 

  50. Ashkan, K., Rogers, P., Bergman, H., Ughratdar, I.: Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 13, 548–554 (2017). https://doi.org/10.1038/nrneurol.2017.105

    Article  Google Scholar 

  51. Flint, R.D., Rosenow, J.M., Tate, M.C., et al.: Continuous decoding of human grasp kinematics using epidural and subdural signals. J. Neural Eng. 14, 016005 (2017). https://doi.org/10.1088/1741-2560/14/1/016005

    Article  Google Scholar 

  52. Chestek, C.A., Gilja, V., Blabe, C.H., et al.: Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas. J. Neural Eng. 10, 026002 (2013). https://doi.org/10.1088/1741-2560/10/2/026002

    Article  Google Scholar 

  53. Hotson, G., McMullen, D.P., Fifer, M.S., et al.: Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13, 026017 (2016). https://doi.org/10.1088/1741-2560/13/2/026017

    Article  Google Scholar 

  54. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., et al.: A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004). https://doi.org/10.1088/1741-2560/1/2/001

    Article  Google Scholar 

  55. Leuthardt, E.C., Miller, K.J., Schalk, G., et al.: Electrocorticography-based brain computer interface – the seattle experience. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 194–198 (2006). https://doi.org/10.1109/TNSRE.2006.875536

    Article  Google Scholar 

  56. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18, 10105–10115 (1998). https://doi.org/10.1523/JNEUROSCI.18-23-10105.1998

    Article  Google Scholar 

  57. Branco, M.P., Freudenburg, Z.V., Aarnoutse, E.J., et al.: Decoding hand gestures from primary somatosensory cortex using high-density ECoG. NeuroImage. 147, 130–142 (2017). https://doi.org/10.1016/j.neuroimage.2016.12.004

    Article  Google Scholar 

  58. Candrea, D.N., McMullen, D.P., Fifer, M.S., et al.: Decoding native cortical representations for flexion and extension at upper limb joints using electrocorticography. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 293–303 (2019). https://doi.org/10.1109/tnsre.2019.2891362

    Article  Google Scholar 

  59. Voytek, B., Knight, R.T.: Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol. Psychiatry. 77, 1089–1097 (2015). https://doi.org/10.1016/j.biopsych.2015.04.016

    Article  Google Scholar 

  60. Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015). https://doi.org/10.1038/nrn3962

    Article  Google Scholar 

  61. Opri, E., Cernera, S., Okun, M.S., et al.: The functional role of thalamocortical coupling in the human motor network. J. Neurosci. 39, 1153–1119 (2019). https://doi.org/10.1523/jneurosci.1153-19.2019

    Article  Google Scholar 

  62. De Hemptinne, C., Ryapolova-Webb, E.S., Air, E.L., et al.: Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. U. S. A. 110, 4780–4785 (2013). https://doi.org/10.1073/pnas.1214546110

    Article  Google Scholar 

  63. de Hemptinne, C., Swann, N.C., Ostrem, J.L., et al.: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18, 779–786 (2015). https://doi.org/10.1038/nn.3997

    Article  Google Scholar 

  64. Bruurmijn, M.L.C.M., Pereboom, I.P.L., Vansteensel, M.J., et al.: Preservation of hand movement representation in the sensorimotor areas of amputees. Brain. 140, 3166–3178 (2017). https://doi.org/10.1093/brain/awx274

    Article  Google Scholar 

  65. Yanagisawa, T., Hirata, M., Saitoh, Y., et al.: Real-time control of a prosthetic hand using human electrocorticography signals: technical note. J. Neurosurg. 114, 1715–1722 (2011). https://doi.org/10.3171/2011.1.JNS101421

    Article  Google Scholar 

  66. Yanagisawa, T., Hirata, M., Saitoh, Y., et al.: Neural decoding using gyral and intrasulcal electrocorticograms. NeuroImage. 45, 1099–1106 (2009). https://doi.org/10.1016/j.neuroimage.2008.12.069

    Article  Google Scholar 

  67. Freudenburg, Z.V., Branco, M.P., Leinders, S., et al.: Sensorimotor ECoG signal features for BCI control: a comparison between people with locked-in syndrome and able-bodied controls. Front. Neurosci. 13, 1–18 (2019). https://doi.org/10.3389/fnins.2019.01058

    Article  Google Scholar 

  68. Blakely, T., Miller, K.J., Zanos, S.P., et al.: Robust, long-term control of an electrocorticographic brain-computer interface with fixed parameters. Neurosurg. Focus. 27, E13 (2009). https://doi.org/10.3171/2009.4.FOCUS0977

    Article  Google Scholar 

  69. Chao, Z.C., Nagasaka, Y., Fujii, N.: Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey. Front. Neuroeng. 3, 3 (2010). https://doi.org/10.3389/fneng.2010.00003

    Article  Google Scholar 

  70. Pels, E.G.M., Aarnoutse, E.J., Leinders, S., et al.: Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clin. Neurophysiol. 130, 1798–1803 (2019). https://doi.org/10.1016/j.clinph.2019.07.020

    Article  Google Scholar 

  71. Moran, D.: Evolution of brain-computer interface: action potentials, local field potentials and electrocorticograms. Curr. Opin. Neurobiol. 20, 741–745 (2010). https://doi.org/10.1016/j.conb.2010.09.010

    Article  Google Scholar 

  72. Ward, M.P., Rajdev, P., Ellison, C., Irazoqui, P.P.: Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 1282, 183–200 (2009). https://doi.org/10.1016/j.brainres.2009.05.052

    Article  Google Scholar 

  73. Perge, J.A., Homer, M.L., Malik, W.Q., et al.: Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10, 036004 (2013). https://doi.org/10.1088/1741-2560/10/3/036004

    Article  Google Scholar 

  74. Downey, J.E., Schwed, N., Chase, S.M., et al.: Intracortical recording stability in human brain-computer interface users. J. Neural Eng. 15, 046016 (2018). https://doi.org/10.1088/1741-2552/aab7a0

    Article  Google Scholar 

  75. Degenhart, A.D., Bishop, W.E., Oby, E.R., et al.: Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nat. Biomed. Eng. (2020). https://doi.org/10.1038/s41551-020-0542-9

  76. Winestone, J.S., Zaidel, A., Bergman, H., Israel, Z.: The use of macroelectrodes in recording cellular spiking activity. J. Neurosci. Methods. 206, 34–39 (2012). https://doi.org/10.1016/j.jneumeth.2012.02.002

    Article  Google Scholar 

  77. Thompson, J.A., Lanctin, D., Ince, N.F., Abosch, A.: Clinical implications of local field potentials for understanding and treating movement disorders. Stereotact. Funct. Neurosurg. 92, 251–263 (2014). https://doi.org/10.1159/000364913

    Article  Google Scholar 

  78. Chang, E.F.: Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron. 86, 68–78 (2015). https://doi.org/10.1016/j.neuron.2015.03.037

    Article  Google Scholar 

  79. Muller, L., Hamilton, L.S., Edwards, E., et al.: Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography. J. Neural Eng. 13, 056013 (2016). https://doi.org/10.1088/1741-2560/13/5/056013

    Article  Google Scholar 

  80. Hermiz, J., Rogers, N., Kaestner, E., et al.: Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state estimation. NeuroImage. 176, 454–464 (2018). https://doi.org/10.1016/j.neuroimage.2018.04.027

    Article  Google Scholar 

  81. Khodagholy, D., Gelinas, J.N., Zhao, Z., et al.: Organic electronics for high-resolution electrocorticography of the human brain. Sci. Adv. 2, e1601027 (2016). https://doi.org/10.1126/sciadv.1601027

    Article  Google Scholar 

  82. Khodagholy, D., Gelinas, J.N., Thesen, T., et al.: NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015). https://doi.org/10.1038/nn.3905

    Article  Google Scholar 

  83. Katz, J.S., Abel, T.J.: Stereoelectroencephalography versus subdural electrodes for localization of the epileptogenic zone: what is the evidence? Neurotherapeutics. 16, 59–66 (2019). https://doi.org/10.1007/s13311-018-00703-2

    Article  Google Scholar 

  84. Bronstein, J.M., Tagliati, M., Alterman, R.L., et al.: Deep brain stimulation for Parkinson disease. Arch. Neurol. 68, 165–171 (2011). https://doi.org/10.1001/archneurol.2010.260

    Article  Google Scholar 

  85. Della Flora, E., Perera, C.L., Cameron, A.L., Maddern, G.J.: Deep brain stimulation for essential tremor: a systematic review. Mov. Disord. 25, 1550–1559 (2010). https://doi.org/10.1002/mds.23195

    Article  Google Scholar 

  86. Lee, D.J., Lozano, C.S., Dallapiazza, R.F., Lozano, A.M.: Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J. Neurosurg. 131, 333–342 (2019). https://doi.org/10.3171/2019.4.JNS181761

    Article  Google Scholar 

  87. Schrock, L.E., Mink, J.W., Woods, D.W., et al.: Tourette syndrome deep brain stimulation: a review and updated recommendations. Mov. Disord. 30, 448–471 (2015). https://doi.org/10.1002/mds.26094

    Article  Google Scholar 

  88. Rasche, D., Rinaldi, P.C., Young, R.F., Tronnier, V.M.: Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg. Focus. 21, 1–8 (2006). https://doi.org/10.3171/foc.2006.21.6.10

    Article  Google Scholar 

  89. Lozano, A.M., Mayberg, H.S., Giacobbe, P., et al.: Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry. 64, 461–467 (2008). https://doi.org/10.1016/j.biopsych.2008.05.034

    Article  Google Scholar 

  90. Anderson, D.N., Osting, B., Vorwerk, J., et al.: Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes. J. Neural Eng. 15, 026005 (2018). https://doi.org/10.1088/1741-2552/aaa14b

    Article  Google Scholar 

  91. Montgomery, E.B., Gale, J.T.: Mechanisms of action of deep brain stimulation (DBS). Neurosci. Biobehav. Rev. 32, 388–407 (2008). https://doi.org/10.1016/j.neubiorev.2007.06.003

    Article  Google Scholar 

  92. Ho, C.H., Triolo, R.J., Elias, A.L., et al.: Functional electrical stimulation and spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 25, 631–654 (2014). https://doi.org/10.1016/j.pmr.2014.05.001

    Article  Google Scholar 

  93. Auchstaetter, N., Luc, J., Lukye, S., et al.: Physical therapists’ use of functional electrical stimulation for clients with stroke: frequency, barriers, and facilitators. Phys. Ther. 96, 995–1005 (2016). https://doi.org/10.2522/ptj.20150464

    Article  Google Scholar 

  94. Thomas, C.K., Griffin, L., Godfrey, S., et al.: Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation. J. Neurophysiol. 89, 2055–2064 (2003). https://doi.org/10.1152/jn.01002.2002

    Article  Google Scholar 

  95. Ajiboye, A.B., Willett, F.R., Young, D.R., et al.: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet. 389, 1821–1830 (2017). https://doi.org/10.1016/S0140-6736(17)30601-3

    Article  Google Scholar 

  96. Bouton, C.E., Shaikhouni, A., Annetta, N.V., et al.: Restoring cortical control of functional movement in a human with quadriplegia. Nature. 533, 1–13 (2016). https://doi.org/10.1038/nature17435

    Article  Google Scholar 

  97. Capogrosso, M., Milekovic, T., Borton, D., et al.: A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 539, 284–288 (2016). https://doi.org/10.1038/nature20118

    Article  Google Scholar 

  98. Sohal, V.S., Sun, F.T.: Responsive neurostimulation suppresses synchronized cortical rhythms in patients with epilepsy. Neurosurg. Clin. N. Am. 22, 481–488 (2011). https://doi.org/10.1016/j.nec.2011.07.007

    Article  Google Scholar 

  99. Morrell, M.J.: Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 77, 1295–1304 (2011). https://doi.org/10.1212/WNL.0b013e3182302056

    Article  Google Scholar 

  100. Lee, B., Zubair, M.N., Marquez, Y.D., et al.: A single-center experience with the NeuroPace RNS system: a review of techniques and potential problems. World Neurosurg. 84, 719–726 (2015). https://doi.org/10.1016/j.wneu.2015.04.050

    Article  Google Scholar 

  101. Sun, F.T., Morrell, M.J.: Closed-loop neurostimulation: the clinical experience. Neurotherapeutics. 11, 553–563 (2014). https://doi.org/10.1007/s13311-014-0280-3

    Article  Google Scholar 

  102. Herron, J.A., Thompson, M.C., Brown, T., et al.: Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J. Neurosurg. 127, 580–587 (2017). https://doi.org/10.3171/2016.8.JNS16536

    Article  Google Scholar 

  103. Herron, J.A., Thompson, M.C., Brown, T., et al.: Cortical brain–computer interface for closed-loop deep brain stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2180–2187 (2017). https://doi.org/10.1109/TNSRE.2017.2705661

    Article  Google Scholar 

  104. Herron, J., Stanslaski, S., Chouinard, T., et al.: Bi-directional brain interfacing instrumentation. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. IEEE (2018).

    Google Scholar 

  105. Starr, P.A.: Totally implantable bidirectional neural prostheses: a flexible platform for innovation in neuromodulation. Front. Neurosci. 12, 1–5 (2018). https://doi.org/10.3389/fnins.2018.00619

    Article  Google Scholar 

  106. Gilron, R., Little, S., Perrone, R., et al.: Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. (2021). https://doi.org/10.1038/s41587-021-00897-5

  107. Wang, W., Collinger, J.L., Degenhart, A.D., et al.: An electrocorticographic brain interface in an individual with tetraplegia. PLoS One. 8, 1–8 (2013). https://doi.org/10.1371/journal.pone.0055344

    Article  Google Scholar 

  108. Degenhart, A.D., Hiremath, S.V., Yang, Y., et al.: Remapping cortical modulation for electrocorticographic brain–computer interfaces: a somatotopy-based approach in individuals with upper-limb paralysis. J. Neural Eng. 15, 026021 (2018). https://doi.org/10.1088/1741-2552/aa9bfb

    Article  Google Scholar 

  109. Vansteensel, M.J., Pels, E.G.M., Bleichner, M.G., et al.: Fully implanted brain–computer interface in a locked-in patient with ALS. N. Engl. J. Med. 375, 2060–2066 (2016). https://doi.org/10.1056/NEJMoa1608085

    Article  Google Scholar 

  110. Benabid, A.L., Costecalde, T., Eliseyev, A., et al.: An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 4422, 1–11 (2019). https://doi.org/10.1016/s1474-4422(19)30321-7

    Article  Google Scholar 

  111. Khanna, P., Swann, N.C., De Hemptinne, C., et al.: Neurofeedback control in parkinsonian patients using electrocorticography signals accessed wirelessly with a chronic, fully implanted device. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1715–1724 (2017). https://doi.org/10.1109/TNSRE.2016.2597243

    Article  Google Scholar 

  112. Subramanian, L., Hindle, J.V., Johnston, S., et al.: Real-time functional magnetic resonance imaging neurofeedback for treatment of Parkinson’s disease. J. Neurosci. 31, 16309–16317 (2011). https://doi.org/10.1523/JNEUROSCI.3498-11.2011

    Article  Google Scholar 

  113. Kuo, C., White-Dzuro, GA., Ko, AL.: Approaches to closed-loop deep brain stimulation for movement disorders. Neurosurgical Focus. 45(2), E2 (2018). https://doi.org/10.3171/2018.5.FOCUS18173

  114. Little, S., Pogosyan, A., Neal, S., et al.: Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013). https://doi.org/10.1002/ana.23951

    Article  Google Scholar 

  115. Tinkhauser, G., Pogosyan, A., Little, S., et al.: The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 140, 1053–1067 (2017). https://doi.org/10.1093/brain/awx010

    Article  Google Scholar 

  116. Moraud, E.M., Tinkhauser, G., Agrawal, M., et al.: Predicting beta bursts from local field potentials to improve closed-loop DBS paradigms in Parkinson’s patients. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 3766–3769 (2018). https://doi.org/10.1109/EMBC.2018.8513348

    Article  Google Scholar 

  117. Velisar, A., Syrkin-Nikolau, J., Blumenfeld, Z., et al.: Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 12, 868–876 (2019). https://doi.org/10.1016/j.brs.2019.02.020

    Article  Google Scholar 

  118. Shah, S.A., Tinkhauser, G., Chen, C.C., et al.: Parkinsonian tremor detection from subthalamic nucleus local field potentials for closed-loop deep brain stimulation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2320–2324 (2018). https://doi.org/10.1109/EMBC.2018.8512741

    Article  Google Scholar 

  119. Kühn, A.A., Tsui, A., Aziz, T., et al.: Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 215, 380–387 (2009). https://doi.org/10.1016/j.expneurol.2008.11.008

    Article  Google Scholar 

  120. Honey, C.R., Hamani, C., Kalia, S.K., et al.: Deep brain stimulation target selection for Parkinson’s disease. Can. J. Neurol. Sci. 44, 3–8 (2017). https://doi.org/10.1017/cjn.2016.22

    Article  Google Scholar 

  121. Little, S., Beudel, M., Zrinzo, L., et al.: Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 87, 717–721 (2016). https://doi.org/10.1136/jnnp-2015-310972

    Article  Google Scholar 

  122. Little, S., Tan, H., Anzak, A., et al.: Bilateral functional connectivity of the basal ganglia in patients with Parkinson’s disease and its modulation by dopaminergic treatment. PLoS One. 8, e82762 (2013). https://doi.org/10.1371/journal.pone.0082762

    Article  Google Scholar 

  123. Malekmohammadi, M., Herron, J., Velisar, A., et al.: Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov. Disord. 31, 426–428 (2016). https://doi.org/10.1002/mds.26482

    Article  Google Scholar 

  124. Swann, N.C., De Hemptinne, C., Miocinovic, S., et al.: Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J. Neurosci. 36, 6445–6458 (2016). https://doi.org/10.1523/JNEUROSCI.1128-16.2016

    Article  Google Scholar 

  125. Swann, N.C., De Hemptinne, C., Thompson, M.C., et al.: Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 15, 046006 (2018). https://doi.org/10.1088/1741-2552/aabc9b

    Article  Google Scholar 

  126. Little, S., Tripoliti, E., Beudel, M., et al.: Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J. Neurol. Neurosurg. Psychiatry. 87, 1388–1389 (2016). https://doi.org/10.1136/jnnp-2016-313518

    Article  Google Scholar 

  127. Rosa, M., Arlotti, M., Marceglia, S., et al.: Adaptive deep brain stimulation controls levodopa-induced side effects in parkinsonian patients. Mov. Disord. 32, 628–629 (2017). https://doi.org/10.1002/mds.26953

    Article  Google Scholar 

  128. Tan, H., Debarros, J., He, S., et al.: Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul. 12, 858–867 (2019). https://doi.org/10.1016/j.brs.2019.02.011

    Article  Google Scholar 

  129. Loza, C.A., Shute, J.B., Principe, J.C., et al.: A marked point process approach for identifying neural correlates of tics in Tourette Syndrome. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 4375–4378 (2017). https://doi.org/10.1109/EMBC.2017.8037825

    Article  Google Scholar 

  130. Cagle, J.N., Okun, M.S., Opri, E., et al.: Differentiating tic electrophysiology from voluntary movement in the human thalamocortical circuit. J. Neurol. Neurosurg. Psychiatry. 91, 533–539 (2020). https://doi.org/10.1136/jnnp-2019-321973

    Article  Google Scholar 

  131. Cagnan, H., Pedrosa, D., Little, S., et al.: Stimulating at the right time: phase-specific deep brain stimulation. Brain. 140, 132–145 (2017). https://doi.org/10.1093/brain/aww286

    Article  Google Scholar 

  132. Molina, R., Okun, M.S., Shute, J.B., et al.: Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J. Neurosurg. 129, 308–314 (2018). https://doi.org/10.3171/2017.6.JNS17626

    Article  Google Scholar 

  133. Meidahl, A.C., Tinkhauser, G., Herz, D.M., et al.: Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov. Disord. 32, 810–819 (2017). https://doi.org/10.1002/mds.27022

    Article  Google Scholar 

  134. Mestre, T.A., Lang, A.E., Okun, M.S.: Factors influencing the outcome of deep brain stimulation: placebo, nocebo, lessebo, and lesion effects. Mov. Disord. 31, 290–298 (2016). https://doi.org/10.1002/mds.26500

    Article  Google Scholar 

  135. Arlotti, M., Marceglia, S., Foffani, G., et al.: Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 90, e971–e976 (2018). https://doi.org/10.1212/WNL.0000000000005121

    Article  Google Scholar 

  136. Coffey, R.J.: Deep brain stimulation devices: a brief technical history and review. Artif. Organs. 33, 208–220 (2009). https://doi.org/10.1111/j.1525-1594.2008.00620.x

    Article  Google Scholar 

  137. Boon, P., Vonck, K., Vandekerckhove, T., et al.: Vagus nerve stimulation for medically refractory epilepsy; efficacy and cost-benefit analysis. Acta Neurochir. 141, 447–453 (1999). https://doi.org/10.1007/s007010050324

    Article  Google Scholar 

  138. Pereira, E.A., Green, A.L., Nandi, D., Aziz, T.Z.: Deep brain stimulation: indications and evidence. Expert Rev. Med. Devices. 4, 591–603 (2007). https://doi.org/10.1586/17434440.4.5.591

    Article  Google Scholar 

  139. Eskandar, E.N., Flaherty, A., Cosgrove, G.R., et al.: Surgery for Parkinson disease in the United States, 1996 to 2000: practice patterns, short-term outcomes, and hospital charges in a nationwide sample. J. Neurosurg. 99, 863–871 (2009). https://doi.org/10.3171/jns.2003.99.5.0863

    Article  Google Scholar 

  140. Lázaro-Muñoz, G., Yoshor, D., Beauchamp, M.S., et al.: Continued access to investigational brain implants. Nat. Rev. Neurosci. 19, 317–318 (2018). https://doi.org/10.1038/s41583-018-0004-5

    Article  Google Scholar 

  141. Rossi, P.J., Giordano, J., Okun, M.S.: The problem of funding off-label deep brain stimulation. JAMA Neurol. 74, 9 (2017). https://doi.org/10.1001/jamaneurol.2016.2530

    Article  Google Scholar 

  142. Hendriks, S., Grady, C., Ramos, K.M., et al.: Ethical challenges of risk, informed consent, and posttrial responsibilities in human research with neural devices: a review. JAMA Neurol. 76, 1506–1514 (2019). https://doi.org/10.1001/jamaneurol.2019.3523

    Article  Google Scholar 

  143. Wang, X., Gkogkidis, A., Iljina, O., et al.: Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries. J. Neural Eng. 265, 197–212 (2017). https://doi.org/10.1088/1741-2552/aa785e

    Article  Google Scholar 

  144. Wang, P.T., King, C.E., McCrimmon, C.M., et al.: Comparison of decoding resolution of standard and high-density electrocorticogram electrodes. J. Neural Eng. 13, 026016 (2016). https://doi.org/10.1088/1741-2560/13/2/026016

    Article  Google Scholar 

  145. Muller, L., Felix, S., Shah, K.G., et al.: Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1528–1531. IEEE (2016).

    Google Scholar 

  146. Sadtler, P.T., Quick, K.M., Golub, M.D., et al.: Neural constraints on learning. Nature. 512, 423–426 (2014). https://doi.org/10.1038/nature13665

    Article  Google Scholar 

  147. Golub, M.D., Sadtler, P.T., Oby, E.R., et al.: Learning by neural reassociation. Nat. Neurosci. 21, 607–616 (2018). https://doi.org/10.1038/s41593-018-0095-3

    Article  Google Scholar 

  148. Sakellaridi, S., Christopoulos, V.N., Aflalo, T., et al.: Intrinsic variable learning for brain-machine interface control by human anterior intraparietal cortex. Neuron. 102, 694–705.e3 (2019). https://doi.org/10.1016/j.neuron.2019.02.012

    Article  Google Scholar 

  149. Bashford, L., Wu, J., Sarma, D., et al.: Concurrent control of a brain-computer interface and natural overt movements. J. Neural Eng. 15, 066021 (2018). https://doi.org/10.1088/1741-2552/aadf3d

    Article  Google Scholar 

  150. Makin, J.G., Moses, D.A., Chang, E.F.: Machine translation of cortical activity to text with an encoder–decoder framework. Nat. Neurosci. 23, 575–582 (2020). https://doi.org/10.1038/s41593-020-0608-8

    Article  Google Scholar 

  151. Xie, Z., Schwartz, O., Prasad, A.: Decoding of finger trajectory from ECoG using deep learning. J. Neural Eng. 15, 036009 (2018). https://doi.org/10.1088/1741-2552/aa9dbe

    Article  Google Scholar 

  152. Wang, N.X.R., Farhadi, A., Rao, R., Brunton, B.: AJILE movement prediction: multimodal deep learning for natural human neural recordings and video. In: AAAI Conference on Artificial Intelligence (2018).

    Google Scholar 

  153. Caldwell, D.J., Ojemann, J.G., Rao, R.P.N.: Direct electrical stimulation in electrocorticographic brain–computer interfaces: enabling technologies for input to cortex. Front. Neurosci. 13, 1–16 (2019). https://doi.org/10.3389/fnins.2019.00804

    Article  Google Scholar 

  154. Bensmaia, S.J., Miller, L.E.: Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15, 313–325 (2014). https://doi.org/10.1038/nrn3724

    Article  Google Scholar 

  155. Delhaye, B.P., Saal, H.P., Bensmaia, S.J.: Key considerations in designing a somatosensory neuroprosthesis. J. Physiol. Paris. 110, 1–7 (2016). https://doi.org/10.1016/j.jphysparis.2016.11.001

    Article  Google Scholar 

  156. Suminski, A.J., Tkach, D.C., Fagg, A.H., Hatsopoulos, N.G.: Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J. Neurosci. 30, 16777–16787 (2010). https://doi.org/10.1523/JNEUROSCI.3967-10.2010

    Article  Google Scholar 

  157. Johnson, L.A., Wander, J.D., Sarma, D., et al.: Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J. Neural Eng. 10, 036021 (2013). https://doi.org/10.1088/1741-2560/10/3/036021

    Article  Google Scholar 

  158. Caldwell, D.J., Cronin, J.A., Wu, J., et al.: Direct stimulation of somatosensory cortex results in slower reaction times compared to peripheral touch in humans. Sci. Rep. 9, 3292 (2019). https://doi.org/10.1038/s41598-019-38619-2

    Article  Google Scholar 

  159. Collins, K.L., Guterstam, A., Cronin, J., et al.: Ownership of an artificial limb induced by electrical brain stimulation. Proc. Natl. Acad. Sci. U. S. A. 114, 166–171 (2017). https://doi.org/10.1073/pnas.1616305114

    Article  Google Scholar 

  160. Cronin, J.A., Wu, J., Collins, K.L., et al.: Task-specific somatosensory feedback via cortical stimulation in humans. IEEE Trans. Haptics. 9, 515–522 (2016). https://doi.org/10.1109/TOH.2016.2591952

    Article  Google Scholar 

  161. Hiremath, S.V., Tyler-Kabara, E.C., Wheeler, J.J., et al.: Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS One. 12, e0176020 (2017). https://doi.org/10.1371/journal.pone.0176020

    Article  Google Scholar 

  162. Kramer, D.R., Lee, M.B., Barbaro, M., et al.: Mapping of primary somatosensory cortex of the hand area using a high-density electrocorticography grid for closed-loop brain computer interface. J. Neural Eng. (2020). https://doi.org/10.1088/1741-2552/ab7c8e

  163. Lee, B., Kramer, D., Armenta Salas, M., et al.: Engineering artificial somatosensation through cortical stimulation in humans. Front. Syst. Neurosci. 12, 1–11 (2018). https://doi.org/10.3389/fnsys.2018.00024

    Article  Google Scholar 

  164. Ramirez-Zamora, A., Giordano, J., Gunduz, A., et al.: Proceedings of the seventh annual deep brain stimulation think tank: advances in neurophysiology, adaptive DBS, virtual reality, neuroethics and technology. Front. Hum. Neurosci. 14, 54 (2020). https://doi.org/10.3389/FNHUM.2020.00054

    Article  Google Scholar 

  165. Tinkhauser, G., Pogosyan, A., Debove, I., et al.: Directional local field potentials: a tool to optimize deep brain stimulation. Mov. Disord. 33, 159–164 (2018). https://doi.org/10.1002/mds.27215

    Article  Google Scholar 

  166. Metman, L.V., Vesper, J., Mir, P., et al.: Directional versus omnidirectional deep brain stimulation: results of a multi-center prospective blinded crossover study (1375). Neurology. 94, 42 (2020)

    Google Scholar 

  167. Connolly, A.T., Vetter, R.J., Hetke, J.F., et al.: A novel lead design for modulation and sensing of deep brain structures. IEEE Trans. Biomed. Eng. 63, 148–157 (2016). https://doi.org/10.1109/TBME.2015.2492921

    Article  Google Scholar 

  168. Butson, C.R., Cooper, S.E., Henderson, J.M., McIntyre, C.C.: Patient-specific analysis of the volume of tissue activated during deep brain stimulation. NeuroImage. 34, 661–670 (2007). https://doi.org/10.1016/j.neuroimage.2006.09.034

    Article  Google Scholar 

  169. Peña, E., Zhang, S., Patriat, R., et al.: Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways. J. Neural Eng. 15, 066020 (2018). https://doi.org/10.1088/1741-2552/aae12f

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Ojemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caldwell, D.J., Herron, J.A., Ko, A.L., Ojemann, J.G. (2023). Motor BMIs Have Entered the Clinical Realm. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_108

Download citation

Publish with us

Policies and ethics