Skip to main content

Nanotechnologies in Oncology

Photodynamic Therapy Approaches

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Nano-oncology, the application of nanomedicine to cancer treatments, has the potential to transform clinical oncology by enhancing the efficacy of various cancer therapies. Photodynamic therapy (PDT) cancer treatment involves the administration of a photosensitizer (PS) to a patient’s localized tumor. Once the PS is accumulated within a target tumor site, it can be activated with laser irradiation at a particular wavelength and so produce reactive oxygen and cytotoxic species, which in turn destroy cancer cells. However, the administration of PSs alone within PDT cancer treatments has noted many pitfalls, such as limited uptake in tumor cells, phototoxicity, poor tissue distribution, and rapid clearance from the body, hindering the effectiveness of such treatments. Nevertheless, the combination of PSs with nanoparticles enables novel drug delivery systems to be developed, which can effectively target tumor sites with several functional molecules, including tumor-specific ligands, antibodies, and cytotoxic agents. These PS nanoparticle targeting conjugates can improve PS uptake and retention in tumor cells, allowing for significantly improved localized PDT cancer treatment outcomes, with reduced systemic and phototoxicity results. For this reason, nano-oncology is attracting considerable scientific interest, and its combinative application within PDT cancer treatments is rapidly being researched. This review highlights the progress, challenges, and opportunities in PDT cancer nanomedicine, as well as discusses the novel PS nanoengineering approaches that have been investigated in order to develop far more effective PDT nanotherapeutic treatment approaches for cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allegra A, Innao V, Gerace D, Vaddinelli D, Allegra AG, Musolino C (2018) Nanobodies and cancer: current status and new perspectives. Cancer Investig 36(4):221–237

    Article  CAS  Google Scholar 

  • Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK (2020) Progress in clinical trials of photodynamic therapy for solid tumors and the role of nanomedicine. Cancer 12(10):2793

    Article  CAS  Google Scholar 

  • Bilan R, Nabiev I, Sukhanova A (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem 17(22):2103–2114

    Article  CAS  Google Scholar 

  • Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975

    Article  CAS  Google Scholar 

  • Chen Q, Chen J, Liang C, Feng L, Dong Z, Song X, Song G, Liu Z (2017) Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J Control Release 263:79–89

    Article  CAS  Google Scholar 

  • Cho MH, Li Y, Lo P-C, Lee H, Choi Y (2020) Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nano-Micro Lett 12(1):1–15

    Article  Google Scholar 

  • Choi YH, Han H-K (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48(1):43–60

    Article  CAS  Google Scholar 

  • Choi J, Kim H, Choi Y (2015) Theranostic nanoparticles for enzyme-activatable fluorescence imaging and photodynamic/chemo dual therapy of triple-negative breast cancer. Quant Imaging Med Surg 5(5):656

    Google Scholar 

  • Chow EK-H, Ho D (2013) Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 5(216):216rv214–216rv214

    Article  Google Scholar 

  • Chung C-H, Lu K-Y, Lee W-C, Hsu W-J, Lee W-F, Dai J-Z, Shueng P-W, Lin C-W, Mi F-L (2020) Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials 257:120227

    Article  CAS  Google Scholar 

  • de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W (2020) Hypericin photodynamic activity in DPPC liposomes–part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 19(5):620–630

    Article  Google Scholar 

  • Deken MM, Kijanka MM, Hernández IB, Slooter MD, de Bruijn HS, van Diest PJ, en Henegouwen PMVB, Lowik CW, Robinson DJ, Vahrmeijer AL (2020) Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release 323:269–281

    Article  CAS  Google Scholar 

  • Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles – current and prospective medical applications. Materials 12(4):617

    Article  Google Scholar 

  • Elbaz NM, Ziko L, Siam R, Mamdouh W (2016) Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci Rep 6(1):1–9

    Article  Google Scholar 

  • El-Readi MZ, Althubiti MA (2019) Cancer nanomedicine: a new era of successful targeted therapy. J Nanomater 2019:1–13

    Article  Google Scholar 

  • Feng Z, Guo J, Liu X, Song H, Zhang C, Huang P, Dong A, Kong D, Wang W (2020) Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials 255:120210

    Article  CAS  Google Scholar 

  • Gao S, Xu Y, Asghar S, Chen M, Zou L, Eltayeb S, Huo M, Ping Q, Xiao Y (2015) Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target 23(6):481–496

    Article  CAS  Google Scholar 

  • Gharibshahi E, Saion E (2012) Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int J Mol Sci 13(11):14723–14741

    Article  CAS  Google Scholar 

  • Goda T, Miyahara Y, Ishihara K (2020) Phospholipid-mimicking cell-penetrating polymers: principles and applications. J Mater Chem B 8(34):7633–7641

    Article  CAS  Google Scholar 

  • Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159(3):312–323

    Article  CAS  Google Scholar 

  • Guo R, Shi X (2012) Dendrimers in cancer therapeutics and diagnosis. Curr Drug Metab 13(8):1097–1109

    Article  CAS  Google Scholar 

  • Huang X, Chen J, Wu W, Yang W, Zhong B, Qing X, Shao Z (2020) Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma. Acta Biomater 109:229–243

    Article  CAS  Google Scholar 

  • Jabir NR, Anwar K, Firoz CK, Oves M, Kamal MA, Tabrez S (2018) An overview on the current status of cancer nanomedicines. Curr Med Res Opin 34(5):911–921

    Article  CAS  Google Scholar 

  • Jain KK (2010a) Advances in the field of nanooncology. BMC Med 8(1):1–11

    Article  Google Scholar 

  • Jain K (2010b) Nanobiotechnology: technologies, markets and companies. Jain PharmaBiotech Publications, Basel

    Google Scholar 

  • Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M (2018) A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew Chem Int Ed 57(35):11384–11388

    Article  CAS  Google Scholar 

  • Keck CM, Müller RH (2013) Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84(3):445–448

    Article  CAS  Google Scholar 

  • Kim Y-J, Lee H-I, Kim J-K, Kim C-H, Kim Y-J (2020) Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids Surf B: Biointerfaces 189:110829

    Article  CAS  Google Scholar 

  • Kono K (2012) Dendrimer-based bionanomaterials produced by surface modification, assembly and hybrid formation. Polym J 44(6):531–540

    Article  CAS  Google Scholar 

  • Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, De Aberasturi DJ, Kantner K (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10(7):619–623

    Article  CAS  Google Scholar 

  • Li A, Zhao J, Fu J, Cai J, Zhang P (2019) Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J Pharm Sci 16(2):161–174

    Article  CAS  Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  Google Scholar 

  • Liu Y, Scrivano L, Peterson JD, Fens MH, Hernández IB, Mesquita B, Toraño JS, Hennink WE, van Nostrum CF, Oliveira S (2020) EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol Pharm 17(4):1276–1292

    Article  CAS  Google Scholar 

  • Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453(1):198–214

    Article  CAS  Google Scholar 

  • Lu L, Zhao X, Fu T, Li K, He Y, Luo Z, Dai L, Zeng R, Cai K (2020) An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 230:119666

    Article  CAS  Google Scholar 

  • Mahjub R, Jatana S, Lee SE, Qin Z, Pauli G, Soleimani M, Madadi S, Li SD (2018) Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 288:239–263

    Article  CAS  Google Scholar 

  • Master A, Livingston M, Gupta AS (2013) Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 168(1):88–102

    Article  CAS  Google Scholar 

  • Millard M, Posty S, Piffoux M, Jasniewski J, Lassalle H-P, Yakavets I, Gazeau F, Wilhelm C, Silva AK, Bezdetnaya L (2020) mTHPC-Loaded extracellular vesicles significantly improve mTHPC diffusion and photodynamic activity in preclinical models. Pharmaceutics 12(7):676

    Article  CAS  Google Scholar 

  • Moitra K (2015) Overcoming multidrug resistance in cancer stem cells. Biomed Res Int 2015(2015):635745

    Google Scholar 

  • Montaseri H, Kruger CA, Abrahamse H (2021) Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics 13(3):296

    Article  CAS  Google Scholar 

  • Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK (2019) Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 6(1):23

    Article  CAS  Google Scholar 

  • Oliveira S, Heukers R, Sornkom J, Kok RJ, en Henegouwen PMvB (2013) Targeting tumors with nanobodies for cancer imaging and therapy. J Control Release 172(3):607–617

    Article  CAS  Google Scholar 

  • Pan Q, Tian J, Zhu H, Hong L, Mao Z, Oliveira JM, Reis RL, Li X (2020) Tumor-targeting polycaprolactone nanoparticles with codelivery of paclitaxel and IR780 for combinational therapy of drug-resistant ovarian cancer. ACS Biomater Sci Eng 6(4):2175–2185

    Article  CAS  Google Scholar 

  • Park J, Lee Y-K, Park I-K, Hwang SR (2021) Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy. Biomedicine 9(1):85

    CAS  Google Scholar 

  • Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46(16):4951–4975

    Article  CAS  Google Scholar 

  • Salunkhe AB, Khot VM, Pawar S (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14(5):572–594

    Article  CAS  Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83(12):4453–4488

    Article  CAS  Google Scholar 

  • Senter PD (2009) Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol 13(3):235–244

    Article  CAS  Google Scholar 

  • Severino P, De Hollanda LM, Santini A, Reis LV, Souto SB, Souto EB, Silva AM (2016) Advances in nanobiomaterials for oncology nanomedicine. In: Nanobiomaterials in cancer therapy, vol 4. William Andrew Publishing, pp 91–115

    Chapter  Google Scholar 

  • Sheng S, Liu F, Lin L, Yan N, Wang Y, Xu C, Tian H, Chen X (2020) Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. J Control Release 328:631–639

    Article  CAS  Google Scholar 

  • Siontorou CG (2013) Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine 8:4215

    Article  Google Scholar 

  • Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:360

    Article  Google Scholar 

  • Son KH, Hong JH, Lee JW (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine 11:5163

    Article  CAS  Google Scholar 

  • Steeland S, Vandenbroucke RE, Libert C (2016) Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 21(7):1076–1113

    Article  CAS  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364

    CAS  Google Scholar 

  • Thakor AS, Gambhir SS (2013) Nanooncology: the future of cancer diagnosis and therapy CA-cancer. J Clin 63(6):395–418

    Google Scholar 

  • Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G (2019) Natural polysaccharide nanomaterials: an overview of their immunological properties. Int J Mol Sci 20(20):5092

    Article  CAS  Google Scholar 

  • Tran S, DeGiovanni P-J, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6(1):1–21

    Article  Google Scholar 

  • Um W, Park J, Ko H, Lim S, Yoon HY, Shim MK, Lee S, Ko YJ, Kim MJ, Park JH (2019) Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials 224:119494

    Article  CAS  Google Scholar 

  • Van Audenhove I, Gettemans J (2016) Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine 8:40–48

    Article  Google Scholar 

  • Wan G, Cheng Y, Song J, Chen Q, Chen B, Liu Y, Ji S, Chen H, Wang Y (2020) Nucleus-targeting near-infrared nanoparticles based on TAT peptide-conjugated IR780 for photo-chemotherapy of breast cancer. Chem Eng J 380:122458

    Article  CAS  Google Scholar 

  • Wang J, Zhong Y, Wang X, Yang W, Bai F, Zhang B, Alarid L, Bian K, Fan H (2017) pH-dependent assembly of porphyrin–silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett 17(11):6916–6921

    Article  CAS  Google Scholar 

  • Wang L, Huo M, Chen Y, Shi J (2018) Tumor microenvironment-enabled nanotherapy. Adv Healthc Mater 7(8):1701156

    Article  Google Scholar 

  • Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WC (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):1–12

    Article  Google Scholar 

  • World Health Organization (2018) Latest global cancer data: cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. International Agency for Research on Cancer/World Health Organization, Geneva

    Google Scholar 

  • Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J, Johnson A, Berglund P, Smith J, Napier ME (2013) RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 10(9):3366–3374

    Article  CAS  Google Scholar 

  • Yang J, Hou M, Sun W, Wu Q, Xu J, Xiong L, Chai Y, Liu Y, Yu M, Wang H (2020) Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv Sci 7(16):2001088

    Article  CAS  Google Scholar 

  • Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65(8):783–797

    Article  Google Scholar 

  • Zhang L, Li Y, Jimmy CY (2014) Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B 2(5):452–470

    Article  CAS  Google Scholar 

  • Zhang P, Sun F, Liu S, Jiang S (2016) Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 244:184–193

    Article  CAS  Google Scholar 

  • Zhang T, Jiang Z, Chen L, Pan C, Sun S, Liu C, Li Z, Ren W, Wu A, Huang P (2020a) PCN-Fe (III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res 13(1):273–281

    Article  Google Scholar 

  • Zhang Q, Wu L, Liu S, Chen Q, Zeng L, Chen X (2020b) Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment. Cancer Cell Int 20(1):1–16

    Article  Google Scholar 

  • Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, Zou X, Cao Y, Ji H, Dong L (2021) A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B: Biointerfaces 199:111549

    Article  CAS  Google Scholar 

  • Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X (2020) A paclitaxel prodrug activatable by irradiation in a hypoxic microenvironment. Angew Chem Int Ed 59(51):23198–23205

    Article  CAS  Google Scholar 

  • Zottel A, Videtič Paska A, Jovčevska I (2019) Nanotechnology meets oncology: nanomaterials in brain cancer research, diagnosis and therapy. Materials 12(10):1588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the University of Johannesburg, the National Laser Centre, the National Research Foundation-South African Research Chairs Initiative (NRF-SARChI) and the University of Johannesburg GES 4.0 PDF Fellowship for their financial grant support.

Author Contributions

Hanieh Montaseri: conceptualization, investigation, and writing – original draft. Heidi Abrahamse: supervision, review, editing, and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest. This manuscript is based on our original research and has neither been published nor is being considered elsewhere for publication. Additionally, all the authors note that they do not have any relationships that they believe could be construed as a conflict of interest with regard to manuscript review process.

Funding

This research was funded by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa, grant number 98337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Montaseri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Montaseri, H., Abrahamse, H. (2022). Nanotechnologies in Oncology. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_203

Download citation

Publish with us

Policies and ethics