Skip to main content

Therapeutic Implications of Spirulina in ROS-Induced Cancer Progression

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 47 Accesses

Abstract

Health and environmental protective properties of spirulina have been investigated in many studies. Since it balances cytokines and other immune elements with the effect of contents that chemicals and other biological elements. It has some effects on immune system strengthening, antioxidant, antioxidative stress, anti-inflammatory, antibacterial, antiviral, antifungal, antidiabetic, antihypertensive and anticancer. When administered in appropriate dose, it decreases the reactive oxygen species (ROS) rates and reduces oxidative stress which contributes to cancer progression. Its effects against oxidative stress and beneficial effects in cancer prevention and cancer treatments have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2009) Production of phenolic compounds from Spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model. Afr J Pharm Pharmacol 3(4):133–139. [Google Scholar]

    CAS  Google Scholar 

  • Abdel-Daim M, El-Bialy BE, Rahman HGA et al (2016) Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: biochemical and histopathological studies. Biomed Pharmacother 77:79–85. https://doi.org/10.1016/j.biopha.2015.12.003

    Article  CAS  Google Scholar 

  • Alberto F, Maura P, Sarra B et al (2017) Antioxidant, Immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina. Oxidative Med Cell Longev:3247528. Published online 2017 Jan 15. https://doi.org/10.1155/2017/3247528

  • Banji D, Banji OJF, Pratusha NG et al (2013) Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food Chem 140(1–2):321–331

    CAS  Google Scholar 

  • Bensehaila S, Doumandji A, Boutekrabt L et al (2015) The nutritional quality of Spirulina platensis of Tamenrasset, Algeria. Afr J Biotechnol 14(9):1649–1654

    Google Scholar 

  • Bermejo-Bescós P, Piñero-Estrada E, Villar del Fresno ÁM (2008) Neuroprotection by Spirulina platensis protean extract and phycocyanin against iron-induced toxicity in SH-SY5Y neuroblastoma cells. Toxicol In Vitro 22(6):1496–1502. https://doi.org/10.1016/j.tiv.2008.05.004

    Article  CAS  Google Scholar 

  • Bhat VB, Madyastha KM (2001) Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem Biophys Res Commun 285(2):262–266

    CAS  Google Scholar 

  • Bhowmik D, Dubey J, Mehra S (2009) Probiotic efficiency of Spirulina platensis—stimulating growth of lactic acid bacteria. World J Dairy Food Sci 4(2):160–163

    Google Scholar 

  • Chen T, Wong YS (2008) In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. J Agric Food Chem 56(12):4352–4358. https://doi.org/10.1021/jf073399k

    Article  CAS  Google Scholar 

  • Chung P, Pond WG, Kingsbury JM et al (1978) Production and nutritive value of Arthrospira platensis. A spiral Blue green alga grown on swine wastes. J Anim Sci 47(2):319–330

    CAS  Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47(4):551–578

    CAS  Google Scholar 

  • de Morais MG, Costa JA (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Google Scholar 

  • Devasagayam TP, Tilak JC, Boloor KK (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  Google Scholar 

  • Dotto GL, Gonçalves JO, Cadaval TRS et al (2013) Biosorption of phenol onto bionanoparticles from Spirulina sp. LEB 18. J Colloid Interface Sci 407:450–456

    CAS  Google Scholar 

  • Edreva A (2005) Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agric Ecosyst Environ 106(2):119–133

    CAS  Google Scholar 

  • El Baky HHA, El Baroty GS, Ibrahem EA (2015) Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutr Hospitalaria 32(1):231–241. https://doi.org/10.3305/nh.2015.32.1.8804

    Article  CAS  Google Scholar 

  • El-Desoky GE, Bashandy SA, Alhazza IM et al (2013) Improvement of mercuric chloride-induced testis injuries and sperm quality deteriorations by Spirulina platensis in rats. PLoS One 8(3). https://doi.org/10.1371/journal.pone.0059177.e59177

  • Elshazly MO, Abd El-Rahman SS, Morgan AM et al (2015) The remedial efficacy of spirulina platensis versus chromium-induced nephrotoxicity in male sprague-dawley rats. PLoS One 10(6). https://doi.org/10.1371/journal.pone.0126780.0126780

  • El-Sheekh MM, Daboo S, Swelim MA, Mohamed S (2014) Production and characterization of antimicrobial active substance from Spirulina platensis. Iran J Microbiol 6(2):112–119

    Google Scholar 

  • Fang L, Zhou C, Cai P et al (2011) Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. J Hazard Mater 190(1–3):810–815

    CAS  Google Scholar 

  • Godlewska K, Michalak I, Pacyga P, Baśladyńska S, Chojnacka K (2019) Potential applications of cyanobacteria: Spirulina platensis filtrates and homogenates in agriculture. World J Microbiol Biotechnol 35(6):80

    CAS  Google Scholar 

  • Grzanna R, Polotsky A, Phan PV, Frondoza CG et al (2006) Immolina, a high-molecular-weight polysaccharide fraction of spirulina, enhances chemokine expression in human monocytic THP-1 cells. J Altern Complement Med 12(5):429–435. https://doi.org/10.1089/acm.2006.12.429

    Article  Google Scholar 

  • Gupta RS, Bajaj A (1983) Halo-tolerant blue-green algae and their role as fertilizer. Adv Appl Phycol 22:309–321

    Google Scholar 

  • Gupta SC, Hevia D, Patchva S et al (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16(11):1295–1322

    CAS  Google Scholar 

  • Gustafson KR, Cardellina JH II, Fuller RW et al (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 81(16):1254–1258

    CAS  Google Scholar 

  • Hayashi K, Hayashi T, Morita N et al (1993) An extract from Spirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells. Phytother Res 7(1):76–80

    Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12(15):1463–1471. https://doi.org/10.1089/aid.1996.12.1463

    Article  CAS  Google Scholar 

  • Hernández-Corona A, Nieves I, Meckes M et al (2002) Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antivir Res 56(3):279–285

    Google Scholar 

  • Hintak F (1985) Morphology of trichomes in Spirulina fusiformis voronichin from lake bogoria, Kenya. Arch Hydrobial Suppl 71:23

    Google Scholar 

  • Hoa Thi Hai B, Tam Thi P, Hien Thi TN (2019) Transformation chlorophyll a of Spirulina platensis to Chlorin e6 derivatives and several applications. Open access Maced. J Med Sci 7(24):4372–4377

    Google Scholar 

  • Homlgren RP, Hostetter HD, Seholes VE (1971) Structural observation of cross walls in the blue green algae, Spirulina major. J Phycol 79(4):309–311

    Google Scholar 

  • Ibrahim AE, Abdel-Daim MM (2015) Modulating effects of spirulina platensis against tilmicosin-induced cardiotoxicity in mice. Cell J 17(1):137–144

    Google Scholar 

  • Ignacio de G, Virginia AV, Saúl B et al (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101(14):5150–5158

    Google Scholar 

  • Jin AC, Seong YB, Sun HC, Mee RK (2020) Spirulina enhances bone modeling in growing male rats by regulating growth-related hormones. Nutrients 12(4):1187

    Google Scholar 

  • Karadeniz A, Cemek M, Simsek N (2009) The effects of Panax ginseng and Spirulina platensis on hepatotoxicity induced by cadmium in rats. Ecotoxicol Environ Saf 72(1):231–235

    CAS  Google Scholar 

  • Kateřina V, Ivana M, Jana J et al (2018) Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxidative Med Cell Longev:4069167, 2018. https://doi.org/10.1155/2018/4069167.eCollection

  • Kaur K, Sachdeva R, Kochhar A (2009) Effect of spirulina supplementation on the nutrient adequacy and health status of non-insulin-dependent diabetes mellitus (NIDDM) male subjects. Stud Ethno Med 3(2):119–126

    Google Scholar 

  • Kepekçi RA, Polat S, Çelik A et al (2013) Protective effect of Spirulina platensis enriched in phenolic compounds against hepatotoxicity induced by CCl4. Food Chem 141(3):1972–1979. https://doi.org/10.1016/j.foodchem.2013.04.107

    Article  CAS  Google Scholar 

  • Kim DH, Park MH, Choi YJ et al (2013) Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-κB in the aged kidney. PLoS One 8(3). https://doi.org/10.1371/journal.pone.0059316.e59316

  • Kiziltan HS, GunesBayir A, Taspinar O et al (2015) Radioprotectant and cytotoxic effects of spirulina in relapsed verrucous vulvar cancer: a case report. Altern Ther Health Med 2:68–72

    Google Scholar 

  • Koníčková R, Vaňková K, Vaníková J et al (2014) Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann Hepatol 13(2):273–283

    Google Scholar 

  • Kumar HD, Singh Y (1992) Iodized and cobalt enriched strains of Spirulina platensis. In: Proceedings of spirulina Etta National Symposium, MCRC. Madras, pp 103–106

    Google Scholar 

  • Kumar SS, Devasagayam TP, Bhushan B, Verma NC (2001) Scavenging of reactive oxygen species by chlorophyllin: an ESR study. Free Radic Res 35:563–574

    CAS  Google Scholar 

  • Lu H-K, Hsieh C-C, Hsu J-J et al (2006) Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur J Appl Physiol 98(2):220–226. https://doi.org/10.1007/s00421-006-0263-0

    Article  Google Scholar 

  • Lu J, Sawano Y, Miyakawa T et al (2011) One-week antihypertensive effect of Ile-Gln-Pro in spontaneously hypertensive rats. J Agric Food Chem 59:559–563. https://doi.org/10.1021/jf104126a

    Article  CAS  Google Scholar 

  • Machu L, Misurcova L, Ambrozova JV et al (2015) Phenolic content and antioxidant capacity in algal food products. Molecules 20(1):1118–1133. https://doi.org/10.3390/molecules20011118

    Article  CAS  Google Scholar 

  • Manoj G, Venkataraman LV, Srinivas L (1992) Antioxidant properties of spirulina. In: Proceedings of the spirulina ETTA National Symposium, MCRC. Madras, pp 148–154

    Google Scholar 

  • Marles RJ, Barrett ML, Barnes J et al (2011) United States pharmacopeia safety evaluation of spirulina. Crit Rev Food Sci Nutr 51(7):593–604. https://doi.org/10.1080/10408391003721719

    Article  CAS  Google Scholar 

  • Mazokopakis EE, Karefilakis CM, Tsartsalis AN, Ganotakis ES et al (2008) Acute rhabdomyolysis caused by spirulina (Arthrospira platensis). Phytomedicine 15(6–7):525–527

    Google Scholar 

  • McCarty MF (2007) “Iatrogenic Gilbert syndrome” – A strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 69:974–994

    CAS  Google Scholar 

  • Miczke A, Szulinska M, Hansdorfer-Korzon et al (2016) Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. Eur Rev Med Pharmacol Sci 20:150–156

    CAS  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16(6):541–550

    CAS  Google Scholar 

  • Muthuraman P, Senthilkumar R, Srikumar K (2009) Alterations in beta-islets of Langerhans in alloxan-induced diabetic rats by marine Spirulina platensis. J Enzyme Inhib Med Chem 24(6):1253–1256. https://doi.org/10.3109/14756360902827240

    Article  CAS  Google Scholar 

  • Nasima Akhtar MA, Partin Noor J, Hossain M (1996) An integrated culture system for outdoor production of microalgae and cyanobacteria. Bangladesh J Sci Ind Res 31(1):137–146

    Google Scholar 

  • Ngo-Matip M-E, Pieme CA, Azabji-Kenfack M et al (2015) Impact of daily supplementation of Spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: a 12-months single blind, randomized, multicenter trial. Nutr J 14:article 70. https://doi.org/10.1186/s12937-015-0058-4

    Article  Google Scholar 

  • Ogawa T, Teuri G (1970) Blue greenalgae Spirulina. J Ferment Technol 48:361

    Google Scholar 

  • Ogawa T, Teuri G (1972) Blue green algae Spirulina. In: Proceedings of IV IFS. Fermentation technology today, p 543

    Google Scholar 

  • Olson JM (2006) Photosynthesis in the Archean era. Photosynth Res 88:109–117. https://doi.org/10.1007/s11120-006-9040-5

    Article  CAS  Google Scholar 

  • Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res 18(9):754–757. https://doi.org/10.1002/ptr.1541

    Article  CAS  Google Scholar 

  • Petrus M, Culerrier R, Campistron M et al (2010) First case report of anaphylaxis to spirulin: identification of phycocyanin as responsible allergen. Allergy 65(7):924–925. https://doi.org/10.1111/j.1398-9995.2009.02257.x

    Article  CAS  Google Scholar 

  • Qishen P, Guo BJ, Kolman A (1989) Radioprotective effect of extract from Spirulina platensis in mouse bone marrow cells studied by using the micronucleus test. Toxicol Lett 48(2):165–169

    CAS  Google Scholar 

  • Ramsey MR, Sharpless NE (2006) ROS as a tumour suppressor? Nat Cell Biol 8(11):1213–1215

    CAS  Google Scholar 

  • Rangsayator N, Upatham ES, Kruatrachue M et al (2002) Phytoremediation potential of spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119(1):45–53

    CAS  Google Scholar 

  • Rasmussen HE, Martínez I, Lee JY, Walter J (2009) Alteration of the gastrointestinal microbiota of mice by edible blue-green algae. J Appl Microbiol 107(4):1108–1118. https://doi.org/10.1111/j.1365-2672.2009.04288.x. [PubMed] [CrossRef] [Google Scholar]

    Article  CAS  Google Scholar 

  • Riss J, Décordé K, Sutra T et al (2007) Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem 55(19):7962–7967. https://doi.org/10.1021/jf070529g

    Article  CAS  Google Scholar 

  • Sachdeva R, Kaur R, Sangha JK (2004) Effect of supplementation of Spirulina on the haematological profile and intellectual status of school girls (7–9 years). J Hum Ecol 15(2):105–108. [Google Scholar]

    Google Scholar 

  • Sanjib B (2020) The role of spirulina (Arthrospira) in the mitigation of heavy-metal toxicity: an appraisal. J Environ Pathol Toxicol Oncol 39(2):149–157

    Google Scholar 

  • Savitskiy VP, Zorin VP (2002) Selective phototoxicity of chlorine e6 derivatives toward leukemic cells. Exp Oncol 24:142–144

    CAS  Google Scholar 

  • Sharoba AM (2014) Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas. J Food Dairy Sci Mansoura Univ 8:517–538

    Google Scholar 

  • Simpore J, Kabore F, Zongo F et al (2006) Nutrition rehabilitation of undernourished children utilizing Spirulina and Misola. Nutr J 5:article 3. https://doi.org/10.1186/1475-2891-5-3

    Article  CAS  Google Scholar 

  • Singh SK, Rahman A, Dixit K et al (2016) Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation. Environ Technol 37(5):613–622. https://doi.org/10.1080/09593330.2015.1075599

    Article  CAS  Google Scholar 

  • Siva Kiran RR, Madhu GM, Satyanarayana SV (2015) Spirulina in combating protein energy malnutrition (PEM) and protein energy wasting (PEW)—a review. J Nutr Res 3(1):62–79

    Google Scholar 

  • Somasekaran T (1987) Technology of production of B.G.A. Spirulina platensis and its application. Ph.D., CFTRI, Mysore, pp 150–170

    Google Scholar 

  • Tang Y, Yu L, Pel Q et al (2014) Extraction of polysaccharides from spirulina with boiling water. Agric Sci Technol 15(6):1043–1045

    CAS  Google Scholar 

  • Tanseem F (1990) Effect of culture filtrate on growth of Spirulina platensis. Curr Sci 59(6):797–798

    Google Scholar 

  • Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA (2007a) Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of mexican population: a preliminary report. Lipids Health Dis 6:article no. 33. https://doi.org/10.1186/1476-511x-6-33

    Article  Google Scholar 

  • Torres-Duran PV, Ferreira-Hermosillo A, Juarez-Oropeza MA (2007b) Antihyperlipemic and antihypertensive effects of Spirulina maxima in an open sample of Mexican population: a preliminary report. Clin Trial Lipids Health Dis 6:33

    Google Scholar 

  • Uma Suganya KS, Govindaraju K, Ganesh Kumar V et al (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356. https://doi.org/10.1016/j.msec.2014.11.043

    Article  CAS  Google Scholar 

  • Usharani G, Saranraj P, Kanchana D (2012) Spirulina cultivation: a review. Int J Pharm Biol Arch 3(6):1327–1134

    Google Scholar 

  • Vincent WF, Silvester WB (1979) Waste water as a source of algae. Water Res 13:717–719

    CAS  Google Scholar 

  • Vitek L, Schwertner HA (2007) The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv Clin Chem 43:1–57

    CAS  Google Scholar 

  • Wan GY, Liu Y, Chen BW, Liu YY, Wang YS, Zhang N (2016) Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med 13(3):325–338

    CAS  Google Scholar 

  • Woo SP, Hye-Jin K, Min L, Dong HL, Jungmin K, Sang-Soo K (2018) Two classes of pigments, carotenoids and C-Phycocyanin, in spirulina powder and their antioxidant activities. Molecules 23(8):2065

    Google Scholar 

  • Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K (2016) The antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina: an overview. Arch Toxicol 90:1817–1840. https://doi.org/10.1007/s00204-016-1744-5

    Article  CAS  Google Scholar 

  • Zhang H, Chen T, Jiang J et al (2011) Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. J Agric Food Chem 59(16):8683–8690. https://doi.org/10.1021/jf2019769

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kiziltan, H.S. (2022). Therapeutic Implications of Spirulina in ROS-Induced Cancer Progression. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_194

Download citation

Publish with us

Policies and ethics