Skip to main content

Mitigation of the Micro- and Nanoplastic Using Phycoremediation Technology

  • Chapter
  • First Online:
Impact of Plastic Waste on the Marine Biota

Abstract

Asia is the largest global plastic consumer, with about 35% of the world’s plastic consumption. Considering that Malaysia is a part of Asia, it is evident that plastic use is extensive. Unfortunately, discarding plastic causes several environmental hazards and affects human wellbeing. The environmental authorities and the government have been organising campaigns that focus on propagating the reduce, recycling, and reuse concept among the Malaysian public. Nevertheless, after considering the extensive presence of microorganisms in the environment and their affinity towards degrading plastic, the use of such microorganisms and enzymes appears an efficacious approach. Environmental degradation of plastic typically happens through five processes: photodegradation, thermo-oxidative breakdown, hydrolytic degradation, mechanical degradation, and microbial degradation. Microbial degradation comprises plastic breakdown by microorganisms, which produce enzymes that can split long-chain polymers. Microbial enzymes are interesting since they are cost-effective and require minimal maintenance; at the same time, they are easy to manipulate. Rhizopus delemar, R. arrhizus, Pseudomonas sp., Penicillium funiculosum, and Aspergillus flavus are the five microbes that have been cited extensively regarding their ability to break down specific plastics. Moreover, fungal, bacterial, cyanobacteria, and actinomycetes capabilities for plastic degradation are among the environmentally friendly techniques that can help the environment. This chapter discussed how cyanobacteria could be used to break down plastics. The projected research outcome is the identification of potent microbial agents that can rapidly degrade plastics with minimal environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida AC, Gomes T, Habuda-Stanić M, Lomba JAB, Romić Ž, Turkalj JV, Lillicrap A (2019) Characterization of multiple biomarker responses using flow cytometry to improve environmental hazard assessment with the green microalgae Raphidocelis subcapitata. Sci Total Environ 687:827–838

    CAS  Google Scholar 

  • Al-Thawadi S (2020) Microplastics and nanoplastics in aquatic environments: challenges and threats to aquatic organisms. Arab J Sci Eng 45:4419–4440

    Google Scholar 

  • Anawar HM, Garcia-Sanchez A, Alam TKM, Rahman MM (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33(2/3):292–312

    CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    CAS  Google Scholar 

  • Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart HP (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261

    CAS  Google Scholar 

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364:1985–1998

    CAS  Google Scholar 

  • Barone GD, Ferizović D, Biundo A, Lindblad P (2020) Hints at the applicability of microalgae and cyanobacteria for the biodegradation of plastics. Sustain 12:1–15

    Google Scholar 

  • Barría C, Brandts I, Tort L, Oliveira M, Teles M (2020) Effect of nanoplastics on fish health and performance: a review. Mar Pollut Bull 151:1–7

    Google Scholar 

  • Bhuyan MS, Venkatramanan S, Selvam S, Szabo S, Hossain MM, Rashed-Un-Nabi M, Paramasivam CR, Jonathan MP, Islam MS (2021) Plastics in marine ecosystem: a review of their sources and pollution conduits. Reg Stud Mar Sci 41:101539

    Google Scholar 

  • Boyle K, Örmeci B (2020) Microplastics and nanoplastics in the freshwater and terrestrial environment: a review. Water 12:2633. https://doi.org/10.3390/w12092633

    Article  Google Scholar 

  • Brandon J, Goldstein M, Ohman MD (2016) Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns. Mar Pollut Bull 110(1):299–308

    CAS  Google Scholar 

  • Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stab 91:1256–1272

    CAS  Google Scholar 

  • Briassoulis D (2007) Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym Degrad Stab 92:1115e32

    Google Scholar 

  • Browne MA, Galloway T, Thompson R (2007) Microplastic--an emerging contaminant of potential concern? Integr Environ Assess Manag 3(4):559–561

    Google Scholar 

  • Brzozowska-Stanuch A, Rabiej S, Stanuch W (2009) The influence of accelerated weathering conditions-UV radiation and temperature on polyamides and polypropylene. Tech Trans 1(3):43–49

    Google Scholar 

  • Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17(4):1–26

    Google Scholar 

  • Caruso G (2015) Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. J Pollut Eff Control 3(3):1000e112

    Google Scholar 

  • Castro-Castellon AT, Hughes JMR, Read DS, Azimi Y, Chipps MJ, Hankins NP (2021) The role of rhizofiltration and allelopathy on the removal of cyanobacteria in a continuous flow system. Environ Sci Pollut Res 28:27,731–27,741

    CAS  Google Scholar 

  • Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395. https://doi.org/10.1016/j.envpol.2018.05.008. Epub 2018 May 9

    Article  CAS  Google Scholar 

  • Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511

    CAS  Google Scholar 

  • Chang X, Xue Y, Li J, Zou L, Tang M (2020) Potential health impact of environmental micro- and nanoplastics pollution. J Appl Toxicol 40:4–15

    CAS  Google Scholar 

  • Cho DO (2005) Challenges to marine debris management in Korea. Coast Manag 33:389–409

    Google Scholar 

  • Choi JS, Hong SH, Park JW (2020) Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus. Mar Environ Res 153:104838

    CAS  Google Scholar 

  • Correa DF, Beyer HL, Possingham HP, Fargione JE, Hill JD, Schenk PM (2021) Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries. Energy 215:119033

    Google Scholar 

  • Crawford CB, Quinn B (2017) Plastic production, waste and legislation. Microplast Pollut 30:39–56

    Google Scholar 

  • Da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T (2016) (Nano)plastics in the environment—sources, fates and effects. Sci Total Environ 566–567:15–26

    Google Scholar 

  • Daba AS, Ezeronye OU (2005) Bioremediation of textile effluent using Phanerochaete chrysosporium. Afr J Biotechnol 4:1548–1553

    Google Scholar 

  • Danso D, Chow J, Streita WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85:1–14

    Google Scholar 

  • Deng H, Wei R, Luo W, Hu L, Li B, Di Y, Shi H (2020) Microplastic pollution in water and sediment in a textile industrial area. Environ Pollut 258:113658

    CAS  Google Scholar 

  • Déniel M, Lagarde F, Caruso A, Errien N (2020) Infrared spectroscopy as a tool to monitor interactions between nanoplastics and microalgae. Anal Bioanal Chem 412:4413–4422

    Google Scholar 

  • Diaz-almela E, Granberg M, Dahl M, Bergman S, Bj M, Magnusson K, Marco-Méndez C, Piñeiro-Juncal N, Mateo MÁ (2021) A temporal record of microplastic pollution in Mediterranean seagrass. Environ Pollut 273:116451. https://doi.org/10.1016/j.envpol.2021.116451

    Article  CAS  Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (2016) Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J 14:1–30

    Google Scholar 

  • Enfrin M, Lee J, Gibert Y, Basheer F, Kong L, Dumée LF (2020) Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J Hazard Mater 384:121393

    CAS  Google Scholar 

  • Fotopoulou KN, Karapanagioti HK (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77

    CAS  Google Scholar 

  • Fotopoulou K, Karapanagioti H (2015) Surface properties of beached plastics. Environ Sci Pollut Res Int 14:11,022–11,032

    Google Scholar 

  • Frias JPGL, Nash R (2019) Microplastics: finding a consensus on the definition. Mar Pollut Bull 138:145–147

    CAS  Google Scholar 

  • Fu D, Chen CM, Qi H, Fan Z, Wang Z, Peng L, Li B (2020a) Occurrences and distribution of microplastic pollution and the control measures in China. Mar Pollut Bull 153:1–14

    Google Scholar 

  • Fu Z, Chen G, Wang W, Wang J (2020b) Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. Environ Pollut 266:115,098

    CAS  Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    CAS  Google Scholar 

  • Hu HT, Shin TC, Lee SY, Chen CC, Yang JC (2011) Influence of hydrolytic degradation on the surface properties of poly-5d/95l-lactide resorbable bone plates. Polym Degrad Stab 96:1522–1529

    CAS  Google Scholar 

  • Iannuzzi G, Mattsson B, Rigdahl M (2013) Color changes due to thermal ageing and artificial weathering of pigmented and textured ABS. Polym Eng Sci 53:1687–1695

    CAS  Google Scholar 

  • Ivar Do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352–364

    CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    CAS  Google Scholar 

  • Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, Barbe V, Meistertzheim A-L, Ghiglione J-F (2019) Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “Plastisphere”. Front Microbiol 10:865

    Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science (80-) 347:768 LP–768771

    Google Scholar 

  • Jasrotia S, Kansal A, Mehra A (2017) Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7:889–896

    CAS  Google Scholar 

  • Jennings S, Mélin F, Blanchard JL, Forster RM, Dulvy NK, Wilson RW (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proc R Soc B 275:1375–1383

    Google Scholar 

  • Jiang JQ (2018) Occurrence of microplastics and its pollution in the environment: a review. Sustain Prod Consum 13:16–23

    Google Scholar 

  • Jin Y, Lu L, Tu W, Luo T, Fu Z (2019) Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 649:308–317

    CAS  Google Scholar 

  • Kamani MH, Eş I, Lorenzo JM, Remize F, Roselló-Soto E, Barba FJ, Clark J, Mousavi Khaneghah A (2019) Advances in plant materials, food by-products, and algae conversion into biofuels: use of environmentally friendly technologies. Green Chem 21:3213–3231

    CAS  Google Scholar 

  • Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, Voit B (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. https://doi.org/10.1007/s00216-016-9956-3

  • Kaur S (2014) Mechanism of aerobic and anaerobic biodegradation. MSc Thesis

    Google Scholar 

  • Kausar A, Anwar Z, Muhammad B (2016) Recent developments in epoxy/graphite, epoxy/graphene and epoxy/graphene nanoplatelet composites: a comparative review. Polym Plast Technol Eng 55:1192–1210

    CAS  Google Scholar 

  • Khan AK, Majeed T (2020) Biodegradation of synthetic and natural plastics by microorganisms: a mini review. JNASP 1(2):180–184

    Google Scholar 

  • Kögel T, Bjorøy Ø, Toto B, Bienfait AM, Sanden M (2020) Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci Total Environ 709:1–16

    Google Scholar 

  • Kole PJ, Löhr AJ, Van Belleghem FGAJ, Ragas AMJ (2017) Wear and tear of tyres: a stealthy source of microplastics in the environment. Int J Environ Res Public Health 14(10):1265

    Google Scholar 

  • Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyestersdII Poly (lactic acid). Polym Degrad Stab 53:329–342

    CAS  Google Scholar 

  • Kothari VK (2008) Polyester and polyamide fibres—apparel applications. Polyesters and Polyamides Elsevier Ltd, pp 419–440

    Google Scholar 

  • Kumar RV, Kanna GR, Elumalai S (2017) Biodegradation of polyethylene by green photosynthetic microalgae. J Bioremed Biodegr 8(381):2

    Google Scholar 

  • Lambert S, Sinclair C, Boxall A (2014) Occurrence, degradation, and effect of polymer-based materials in the environment. Rev Environ Contam Toxicol 227:1–53

    CAS  Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    CAS  Google Scholar 

  • Lusher A, Hollman P, Mendoza-Hill J (2017) Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO

    Google Scholar 

  • Masiá P, Sol D, Ardura A, Laca A, Borrell YJ, Dopico E, Laca A, Machado-Schiaffino G, Díaz M, Garcia-Vazquez E (2020) Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants. Mar Pollut Bull 156:1–7

    Google Scholar 

  • McNeill IC, Leiper HA (1985a) Degradation studies of some polyesters and polycarbonates-2 Polylactide: degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab 11:309–326

    CAS  Google Scholar 

  • McNeill IC, Leiper HA (1985b) Degradation studies of some polyesters and polycarbonates-1 Polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab 11:267–285

    CAS  Google Scholar 

  • Meng Y, Kelly FJ, Wright SL (2020) Advances and challenges of microplastic pollution in freshwater ecosystems: a UK perspective. Environ Pollut 256:113445

    CAS  Google Scholar 

  • Moore GF, Saunders SM (1997) Advances in biodegradable polymers. Rapra Technology Limited

    Google Scholar 

  • Muhamad WNAW, Othman R, Shaharuddin RI, Hasni MSI (2015) Microorganism as plastic biodegradation agent towards sustainable environment. Adv Environ Biol 9:8–13

    Google Scholar 

  • Müller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Google Scholar 

  • Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M (2011) Fouling and stability of polymers and composites in marine environment. Int Biodeterior Biodegrad 65:276–284

    CAS  Google Scholar 

  • Ncube LK, Ude AU, Ogunmuyiwa EN, Zulkifli R, Beas IN (2021) An overview of plasticwaste generation and management in food packaging industries. Recycling 6:1–25

    Google Scholar 

  • Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388

    CAS  Google Scholar 

  • Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492

    CAS  Google Scholar 

  • Oliveira M, Almeida M, Miguel I (2019) A micro(nano)plastic boomerang tale: a never ending story? TrAC—Trends Anal Chem 112:196–200

    CAS  Google Scholar 

  • Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33:324–375

    CAS  Google Scholar 

  • Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177:81–89

    CAS  Google Scholar 

  • Piccardo M, Renzi M, Terlizzi A (2020) Nanoplastics in the oceans: theory, experimental evidence and real world. Mar Pollut Bull 157:111317

    CAS  Google Scholar 

  • Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials Shawbury: Rapra Technology Limited

    Google Scholar 

  • Pramila R, Padmavathy K, Ramesh KV, Mahalakshmi K (2012) Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis—potential candidates for biodegradation of low-density polyethylene (LDPE). J Bacteriol Res 4:9–14

    CAS  Google Scholar 

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2019) Effects of microplastics on microalgae populations: a critical review. Sci Total Environ 665:400–405

    CAS  Google Scholar 

  • Rabek JF (1996) Photodegradation of polymers physical characteristics and applications. Springer, Berlin

    Google Scholar 

  • Razza F, Innocenti FD (2012) Bioplastics from renewable resources: the benefits of biodegradability. Asia Pac J Chem Eng 7(3):301–309

    Google Scholar 

  • Rillig MC (2012) Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol:6453–6454

    Google Scholar 

  • Rillig MC, Lehmann A, de Souza Machado AA, Yang G (2019) Microplastic effects on plants. New Phytol 223:1066–1070

    Google Scholar 

  • Roy M, Mohanty K (2019) A comprehensive review on microalgal harvesting strategies: current status and future prospects. Algal Research 44:101683

    Google Scholar 

  • Sakai W, Kinoshita M, Nagata M, Tsutsumi N (2001) ESR studies of photosensitized degradation of poly(L-lactic acid) via photoionization of dopant. J Poly Sci A Polym Chem 39:706–714

    CAS  Google Scholar 

  • Sarmah P, Rout J (2018) Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ Sci Pollut Res 25:33,508–33,520

    CAS  Google Scholar 

  • Shanmugam S, Hari A, Kumar D, Rajendran K, Mathimani T, Atabani AE, Brindhadevi K, Pugazhendhi A (2021) Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae. Fuel 285:119052

    CAS  Google Scholar 

  • Sharma S, Chatterjee S (2017) Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24:21,530–21,547

    Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J 2010:1–20

    Google Scholar 

  • Singh S, Kumar V, Datta S, Dhanjal DS, Sharma K, Samuel J, Singh J (2020) Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ 709:135895

    CAS  Google Scholar 

  • Siracusa V (2019) Microbial degradation of synthetic biopolymers waste. Polymers 11(6):1066

    CAS  Google Scholar 

  • Sobhani Z, Zhang X, Gibson C, Naidu R, Megharaj M, Fang C (2020) Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm. Water Res 174:1–10

    Google Scholar 

  • Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163

    Google Scholar 

  • Swan SH, Sathyanarayana S, Barrett ES, Janssen S, Liu F, Nguyen RH, Redmon JB (2015) First trimester phthalate exposure and anogenital distance in newborns. Hum Reprod 30(4):963–972

    CAS  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci 364:2027–2045

    CAS  Google Scholar 

  • Tokiwa Y, Calabia BP (2004) Review degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    CAS  Google Scholar 

  • Vahabi H, Sonnier R, Ferry L (2014) Effects of ageing on the fire behaviour of flame-retarded polymers: a review Polym Int 64: 313–328

    Google Scholar 

  • Vallero D, Daniel AV, Gunsch KC (2020) Applications and implications of emerging biotechnologies in environmental engineering. J Environ Eng 146:3120005

    CAS  Google Scholar 

  • Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Google Scholar 

  • Venâncio C, Ferreira I, Martins MA, Soares AMVM, Lopes I, Oliveira M (2019) The effects of nanoplastics on marine plankton: a case study with polymethylmethacrylate. Ecotoxicol Environ Saf 184:109632

    Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344

    CAS  Google Scholar 

  • Wahl A, Le Juge C, Davranche M, El Hadri H, Grassl B, Reynaud S, Gigault J (2021) Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere 262:1–7

    Google Scholar 

  • Wan JK, Chu W-L, Kok Y, Lee C (2018) Distribution of microplastics and nanoplastics in aquatic ecosystems and their impacts on aquatic organisms, with emphasis on microalgae. In: de Voogt P (ed) Reviews of environmental contamination and toxicology. Springer, Cham

    Google Scholar 

  • Wang L, Wu WM, Bolan NS, Tsang DCW, Li Y, Qin M, Hou D (2021) Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives. J Hazard Mater 401:123415

    CAS  Google Scholar 

  • Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 5:1–18

    Google Scholar 

  • Wenten IG, Khoiruddin K, Harimawan A, Ting YP, Boopathy R (2020) Membrane biosorption: recent advances and challenges. Curr Pollut Reports 6:152–172

    CAS  Google Scholar 

  • de Wilde B (2005) International norms on biodegradability and certification procedures. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, Sawbury, pp 145–182

    Google Scholar 

  • Williams S, Peoples O (1996) Biodegradable plastics from plants. CHEMTECH 26:38–44

    CAS  Google Scholar 

  • World Economic Forum (2016) The new plastics economy—rethinking the future of plastics. Ellen MacArthur Foundation and McKinsey & Company

    Google Scholar 

  • Xia W, Rao Q, Deng X, Chen J, Xie P (2020) Rainfall is a significant environmental factor of microplastic pollution in inland waters. Sci Total Environ 732:139065

    CAS  Google Scholar 

  • Xiao Y, Jiang X, Liao Y, Zhao W, Zhao P, Li M (2020) Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere 255:126914

    CAS  Google Scholar 

  • Xu B, Liu F, Cryder Z, Huang D, Lu Z, He Y, Wang H, Lu Z, Brookes PC, Tang C, Gan J, Xu J (2020a) Microplastics in the soil environment: occurrence, risks, interactions and fate–a review. Crit Rev Environ Sci Technol 50:2175–2222

    CAS  Google Scholar 

  • Xu C, Zhang B, Gu C, Shen C, Yin S, Aamir M, Li F (2020b) Are we underestimating the sources of microplastic pollution in terrestrial environment? J Hazard Mater 400:123228

    CAS  Google Scholar 

  • Yasuda N, Wang Y, Tsukegi T, Shirai Y, Nishida H (2010) Quantitative evaluation of photodegradation and racemization of poly(l-lactic acid) under UV-C irradiation. Polym Degrad Stab 95:1238–1243

    CAS  Google Scholar 

  • Yu Y, Li H, Zeng Y, Chen B (2009) Extracellular enzymes of cold-adapted bacteria from Arctic Sea ice, Canada Basin. Polar Biol 32:1539–1547

    Google Scholar 

  • Zhang D, Cui Y, Zhou H, Jin C, Yu X, Xu Y, Li Y, Zhang C (2020a) Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci Total Environ 703:134768

    CAS  Google Scholar 

  • Zhang Y, Liang J, Zeng G, Tang W, Lu Y, Luo Y, Xing W, Tang N, Ye S, Li X, Huang W (2020b) How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: a review. Sci Total Environ 705:135979

    CAS  Google Scholar 

  • Zheng Y, Yanful EK, Bassi AS (2005) A review of plastic waste biodegradation. Crit Rev Biotechnol 25:243–250

    CAS  Google Scholar 

  • Zhu X, Zhao W, Chen X, Zhao T, Tan L, Wang J (2020) Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Mar Environ Res 158:105005

    CAS  Google Scholar 

  • Ziajahromi S, Drapper D, Hornbuckle A, Rintoul L, Leusch FDL (2020) Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Sci Total Environ 713:136356

    CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Higher Education (Malaysia) and International Islamic University Malaysia under RPDF19-003-0013 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashidi Othman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Othman, R. et al. (2022). Mitigation of the Micro- and Nanoplastic Using Phycoremediation Technology. In: Shahnawaz, M., Sangale, M.K., Daochen, Z., Ade, A.B. (eds) Impact of Plastic Waste on the Marine Biota. Springer, Singapore. https://doi.org/10.1007/978-981-16-5403-9_10

Download citation

Publish with us

Policies and ethics