Skip to main content

Theoretical Approach to Chemical Reactions and Photochemical Processes in Ionic Liquid

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 451 Accesses

Abstract

Electronic structure governs the essential part of chemical reaction and photoexcitation. Hence, quantum chemistry plays a fundamental role in the understanding of the chemical phenomena in the condensed phase. This situation holds in the ionic liquid system as well, but further difficulties are recognized. In this chapter, we will focus on chemical reactions and solvatochromism in ionic liquids systems. Two hybrid approaches between quantum chemistry and statistical mechanics are explained, namely RISM–SCF–SEDD and QM/MM–MD. In particular, the details of the bathochromic shifts of a N, N-dimethyl-4-nitroaniline molecule in [BMIM][BF4] and some conventional solvents were discussed using QM/MM–MD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mennucci B, Cammi R (ed) (2008) Continuum solvation models in chemical physics: from theory to applications. John Wiley & Sons, Hoboken

    Google Scholar 

  2. Daguenet C, Dyson PJ, Krossing I, Oleinikova A, Slattery J, Wakai C, Weingärtner H (2006) Dielectric response of imidazolium-based room-temperature ionic liquids. J Phys Chem B 110:12682–12688

    Article  CAS  PubMed  Google Scholar 

  3. Bruzzone S, Malvaldi M, Chiappe C (2007) A RISM approach to the liquid structure and solvation properties of ionic liquids. Phys Chem Chem Phys 9:5576–5581

    Article  CAS  PubMed  Google Scholar 

  4. Bruzzone S, Malvaldi M, Chiappe C (2008) Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations. J Chem Phys 129:074509

    Article  PubMed  Google Scholar 

  5. Hayaki S, Kido K, Yokogawa D, Sato H, Sakaki S (2009) A theoretical analysis of a Diels–Alder reaction in ionic liquids. J Phys Chem B 113:8227–8230

    Article  CAS  PubMed  Google Scholar 

  6. Chiappe C, Malvaldi M, Silvio Pomelli C (2010) The solvent effect on the Diels–Alder reaction in ionic liquids: multiparameter linear solvation energy relationships and theoretical analysis. Green Chem 12:1330–1339

    Article  CAS  Google Scholar 

  7. Chiappe C, Malvaldi M, Silvio Pomelli C (2010) Ab initio study of the Diels–Alder reaction of cyclopentadiene with acrolein in a ionic liquid by KS-DFT/3D-RISM-KH theory. J Chem Theory Comput 6:179–183

    Article  CAS  PubMed  Google Scholar 

  8. Ishizuka R, Matubayasi N (2016) Energetic self-consistent determination of atomic charges of ionic liquid through a combination of molecular dynamics simulation and density functional theory. J Chem Theory Comput 12:804–811

    Article  CAS  PubMed  Google Scholar 

  9. Yokogawa D, Sato H, Sakaki S (2010) An integral equation theory for structural fluctuation in molecular liquid. Chem Phys Lett 487:241–245

    Article  CAS  Google Scholar 

  10. Kikui K, Hayaki S, Kido K, Yokogawa D, Kasahara K, Matsumura Y, Sato H, Sakaki S (2016) Solvent structure of ionic liquid with carbon dioxide. J Mol Liq 217:12–16

    Article  CAS  Google Scholar 

  11. Matsumura Y, Sato H (2015) An integral equation theory for solvation effects on the molecular structural fluctuation. J Chem Phys 143:014104

    Article  PubMed  Google Scholar 

  12. Sato H, Hirata F, Kato S (1996) Analytical energy gradient for the reference interaction site model multiconfigurational self-consistent-field method: application to 1,2-difluoroethylene in aqueous solution. J Chem Phys 105:1546–1551

    Article  CAS  Google Scholar 

  13. Yokogawa D, Sato H, Sakaki S (2007) New generation of the reference interaction site model self-consistent field method: introduction of spatial electron density distribution to the solvation theory. J Chem Phys 126:244504

    Article  PubMed  Google Scholar 

  14. Sato H (2013) A modern solvation theory: quantum chemistry and statistical chemistry. Phys Chem Chem Phys 15:7450–7465

    Article  CAS  PubMed  Google Scholar 

  15. Acevedo O, Jorgensen WL, Evanseck JD (2007) Elucidation of rate variations for a Diels–Alder reaction in ionic liquids from QM/MM simulations. J Chem Theory Comput 3:132–138

    Article  CAS  PubMed  Google Scholar 

  16. Hayaki S, Kido K, Sato, H, Sakaki S (2010) Ab initio study on SN2 reaction of methyl p-nitrobenzenesulfonate and chloride anion in [mmim][PF6]. Phys Chem Chem Phys 12:1822–1826

    Article  CAS  PubMed  Google Scholar 

  17. Hayaki S, Kimura Y, Sato, H (2013) Ab initio study on an excited-state intramolecular proton-transfer reaction in ionic liquid. J Phys Chem 117:6759–6767

    Article  CAS  Google Scholar 

  18. Wada T, Nakano H, Sato H (2014) Solvatochromic shift of Brooker’s Merocyanine: hartree-fock exchange in time dependent density functional calculation and hydrogen bonding effect. J Chem Theory Comput 10:4535–4547

    Article  CAS  PubMed  Google Scholar 

  19. Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. J Chem Phys 48:157–173

    CAS  Google Scholar 

  20. Hirao K (1992) Multireference Møller-Plesset method. Chem Phys Lett 190:374–380

    Article  CAS  Google Scholar 

  21. Hirao K (ed) (1999) Recent advances in multireference methods. World Scientific, Singapore

    Google Scholar 

  22. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  PubMed  Google Scholar 

  23. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 6:700–733

    Article  Google Scholar 

  24. Warshel A (2008) Computer modeling of chemical reactions in enzymes and solutions. Wiley, New York

    Google Scholar 

  25. Nakano H, Sato H (2017) Introducing the mean field approximation to CDFT/MMpol method: statistically converged equilibrium and nonequilibrium free energy calculation for electron transfer reactions in condensed phases. J Chem Phys 146:154101

    Article  PubMed  Google Scholar 

  26. Yamamoto T (2008) Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients. J Chem Phys 129:244104

    Article  PubMed  Google Scholar 

  27. Nakano H, Yamamoto T (2012) Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent. J Chem Phys 136:134107

    Article  PubMed  Google Scholar 

  28. Nakano H, Yamamoto T (2012) Accurate and efficient treatment of continuous solute charge density in the mean-field QM/MM free energy calculation. J Chem Theory Comput 9:188–203

    Article  PubMed  Google Scholar 

  29. Higashi M, Kosugi T, Hayashi S, Saito S (2014) Theoretical study on excited states of bacteriochlorophyll a in solutions with density functional assessment. J Phys Chem B 118:10906–10918

    Article  CAS  PubMed  Google Scholar 

  30. Wada T, Nakano H. Sato H (2014) Solvatochromic shift of Brooker’s Merocyanine: hartree–fock exchange in time dependent density functional calculation and hydrogen bonding effect. J Chem Theory Comput 10:4535–4547

    Google Scholar 

  31. Nakano H, Sato H (2015) An Ab unitio QM/MM-based approach to efficiently evaluate vertical excitation energies in condensed phases including the nonequilibrium solvation effect. J Phys Chem B 120:1670–1678

    Article  PubMed  Google Scholar 

  32. Hu H, Lu Z, Parks JM, Burger SK, Yang W (2008) Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. J Chem Phys 128:034105

    Article  PubMed  Google Scholar 

  33. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  34. Ten-no S, Hirata F, Kato S (1994) Reference interaction site model self-consistent field study for solvation effect on carbonyl compounds in aqueous solution. J Chem Phys 100:7443–7453

    Article  CAS  Google Scholar 

  35. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. J Am Chem Soc 106:6638–6646

    Article  CAS  Google Scholar 

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  37. Liu Z, Wu X, Wang W (2006) A novel united-atom force field for imidazolium-based ionic liquids. Phys Chem Chem Phys 8:1096–1104

    Article  CAS  PubMed  Google Scholar 

  38. Morita A, Kato S (1997) Ab initio molecular orbital theory on intramolecular charge polarization: effect of hydrogen abstraction on the charge sensitivity of aromatic and nonaromatic species. J Am Chem Soc 119:4021

    Article  CAS  Google Scholar 

  39. Nakano H, Yamamoto T, Kato S (2010) A wave-function based approach for polarizable charge model: systematic comparison of polarization effects on protic, aprotic, and ionic liquids. J Chem Phys 132:044106

    Article  PubMed  Google Scholar 

  40. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  41. Laurence C, Nicolet P, Dalati MT, Abboud JM, Notario R (1994) The empirical treatment of solvent-solute interactions: 15 Years of .pi.*. J Phys Chem 98:5807–5816

    Article  CAS  Google Scholar 

  42. Kimura Y, Hamamoto T, Terazima M (2007) Raman spectroscopic study on the solvation of N,N-dimethyl-p-nitroaniline in room-temperature ionic liquids. J Phys Chem A 111:7081–7089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakano, H., Kimura, Y., Sato, H. (2021). Theoretical Approach to Chemical Reactions and Photochemical Processes in Ionic Liquid. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_9

Download citation

Publish with us

Policies and ethics