Skip to main content

Performance Enhancement of Fractional \({\text{PI}}^{{{{\uplambda}}}} {\text{D}}^{{{{\upmu}}}}\) Controllers Using Modified Grey Wolf Optimization

  • Conference paper
  • First Online:
Proceedings of International Conference on Data Science and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 287))

  • 600 Accesses

Abstract

In this paper, a modified version of Grey Wolf Optimizer (GWO) is presented to upgrade the parameters of the fractional order PID (FOPID) controllers. The Modified Grey Wolf Optimization (MGWO) investigates for the most favorable solution in the predefined search space. The MGWO is incorporated with a novel fitness function which helps the algorithm for fastest computation. The proposed technique is certified by minimizing the defined fitness. Additionally, the proposed technique is exercised for different benchmark problems, and results are validated with well-established techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oustaloup, A.: La commande CRONE : Commande robuste d’ordre non entier. Hermès (1991)

    Google Scholar 

  2. Oustaloup, A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans. Circuits Syst. 28(10), 1007–1009 (Oct. 1981). https://doi.org/10.1109/TCS.1981.1084917

    Article  Google Scholar 

  3. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (May 1986). https://doi.org/10.1137/0517050

    Article  MathSciNet  MATH  Google Scholar 

  4. Podlubny, I.: Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers. IEEE Trans. Automat. Contr. 44(1), 208–214 (1999). https://doi.org/10.1109/9.739144

    Article  MATH  Google Scholar 

  5. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000). https://doi.org/10.1109/81.817385

    Article  Google Scholar 

  6. Podlubny, I., Dorcak, L., Kostial, I.: “On fractional derivatives, fractional-orlder dynamic systems and PIID controllers,” Proceedings of the 36th IEEE Conference on Decision and Control. 5(December), 4985–4990 (1997) https://doi.org/10.1109/CDC.1997.649841

  7. Calder, A.J., Vinagre, B.M., Feliu, V.: “Linear fractional order control of a DC-DC buck converter,” in European Control Conference (ECC-2003), pp. 1292–1297 (2003). 10.23919 /ECC.2003.7085139

    Google Scholar 

  8. Chen, Y.Q., Xue, D., Dou, H.: “Fractional calculus and biomimetic control,” In EEE International Conference on Robotics and Biomimetics, pp. 901–906 (2004). 10.1109/ ROBIO. 2004.1521904

    Google Scholar 

  9. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)

    Google Scholar 

  10. Xue, D., Zhao, C., Chen, Y.Q., Xue, D.X.D., Zhao, C.Z.C., Chen, Y.C.Y.: “Fractional order PID control of a DC-motor with elastic shaft: a case study,” 2006 Am. Control Conf., no. JULY, pp. 3182–3187 (2006). 10.1109/ ACC. 2006.1657207

    Google Scholar 

  11. Barbosa, R.S., Tenreiro Machado, J.A.A., Jesus, I.S.: “Effect of fractional orders in the velocity control of a servo system,” Comput. Math. with Appl. 59(5), 1679–1686, (Mar 2010). https://doi.org/10.1016/j.camwa.2009.08.009.

  12. H.K.M.Y. Amer M. L. Hanafy H. H. Hassan: “Modified evolutionary particle swarm optimization for AVR-PID tuning,” in Selected Papers from: Communications & Information Technology 2008, Circuits, Systems and Signals, pp. 164–173 (2008)

    Google Scholar 

  13. Ramezanian, H., Balochian, S., Zare, A.: Design of optimal fractional-order PID controllers using particle swarm optimization algorithm for automatic voltage regulator (AVR) system. J. Control. Autom. Electr. Syst. 24(5), 601–611 (2013). https://doi.org/10.1007/s40313-013-0057-7

    Article  Google Scholar 

  14. Verma, S.K., Yadav, S., Nagar, S.K.: “Controlling of an automatic voltage regulator using optimum integer and fractional order PID controller,” in IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI), (Dec 2015), pp. 1–5, https://doi.org/10.1109/WCI.2015.7495525

  15. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  16. Yadav, S., Verma, S.K., Nagar, S.K.: “Design of an optimized PID controller for non-minimum phase system with delay,” in 2015 39th National Systems Conference (NSC), pp. 1–4 (Dec 2015), https://doi.org/10.1109/NATSYS.2015.7489096

  17. Yadav, S., Verma, S.K., Nagar, S.K.: Optimized PID controller for magnetic levitation system. IFAC-PapersOnLine 49(1), 778–782 (2016). https://doi.org/10.1016/j.ifacol.2016.03.151

    Article  Google Scholar 

  18. Verma, S.K., Yadav, S., Nagar, S.K.: “Optimization of fractional order PID controller using grey wolf optimizer,” J. Control. Autom. Electr. Syst. 28(3) (2017). 10.1007/ s40313–017–0305–3

    Google Scholar 

  19. T. M. J. A., Abilio, A.: “Fractional-order hybrid control of robot manipulators,” Proc. IEEE Conf. Robotics and Automation, pp. 602–607 (1985)

    Google Scholar 

  20. Vinagre, Y.C.B.M.: “Lecture notes on fractional calculus applications in automatic control and robotics,” 41st IEEE CDC2002 Tutor. Work., 2, 1–310 (2002). Accessed: Apr. 07, 2017

    Google Scholar 

  21. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005). https://doi.org/10.1109/TEVC.2005.843751

    Article  Google Scholar 

  22. Jayaswal, K., Palwalia, D.K., Kumar, S.: Performance investigation of PID controller in trajectory control of two-link robotic manipulator in medical robots. J. Interdisciplinary Math. 24(2), 467–478 (2021)

    Article  Google Scholar 

  23. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  24. Lachhab, N. et al.: “Fractional order PID controller (FOPID)-Toolbox,” in European Control Conference, pp. 3694–3699, (Jul 2013), https://doi.org/10.23919/ECC. 2013.6669365

  25. Garcia, P., Albertos, P.: A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica 44, 1062–1071 (2007). https://doi.org/10.1016/j.automatica.2007.08.0221/10

    Article  MathSciNet  MATH  Google Scholar 

  26. Lachhab, N., Svaricek, F., Wobbe, F., Rabba, H.: “Fractional order PID controller (FOPID)-Toolbox,” in 2013 European Control Conference (ECC), Jul. 2013, pp. 3694–3699, doi: https://doi.org/10.23919/ECC.2013.6669365

  27. Golob, M., Tovornik, B.: “Modeling and control of the magnetic suspension system,” ISA Trans. 42, 89–100 (2003), Accessed: Dec. 24, 2017

    Google Scholar 

  28. Yadav, S., Verma, S. K., Nagar, S. K.: “Performance enhancement of magnetic levitation system using teaching learning based optimization,” Alexandria Eng. J., no. In press, (Sep 2017). https://doi.org/10.1016/J.AEJ.2017.08.016.

  29. Kumar, V., Jerome, J.: LQR based optimal tuning of PID controller for trajectory tracking of Magnetic Levitation System. Procedia Eng. 64, 254–264 (2013). https://doi.org/10.1016/j.proeng.2013.09.097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, S.K., Choudhary, A.K. (2022). Performance Enhancement of Fractional \({\text{PI}}^{{{{\uplambda}}}} {\text{D}}^{{{{\upmu}}}}\) Controllers Using Modified Grey Wolf Optimization. In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications. Lecture Notes in Networks and Systems, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-16-5348-3_2

Download citation

Publish with us

Policies and ethics