Skip to main content

Advanced Transmission X-ray Microscopy for Energy Materials and Devices

  • Chapter
  • First Online:
Advanced X-ray Imaging of Electrochemical Energy Materials and Devices
  • 793 Accesses

Abstract

Transmission X-ray microscopy (TXM) can acquire a full-field projection image with spatial resolution of tens of nanometers using one-time exposure. Thus, it is easy to combine this imaging method with computed tomography and to get three-dimensional (3D) morphology information of samples. In this chapter, we will introduce the methods of TXM and corresponding operation principles, the application examples of energy materials and devices, and the possible development of these imaging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mokso, R., Cloetens, P., Maire, E., Ludwig, W., Buffiere, J.Y.: Nanoscale zoom tomography with hard X-rays using Kirkpatrick-Baez optics. Appl. Phys. Lett. 90, 144104 (2007)

    Google Scholar 

  2. Da Silva, J.C., Pacureanu, A., Yang, Y., Bohic, S., Morawe, C., Barrett, R., Cloetens, P.: Efficient concentration of high-energy X-rays for diffraction-limited imaging resolution. Optica 4(5), 492–495 (2017)

    Article  Google Scholar 

  3. Hubert, M., Pacureanu, A., Guilloud, C., Yang, Y., da Silva, J.C., Laurencin, J., Lefebvre-Joud, F., Cloetens, P.: Efficient correction of wavefront inhomogeneities in X-ray holographic nanotomography by random sample displacement. Appl. Phys. Lett. 112, 203704 (2018)

    Google Scholar 

  4. Bernhardt, M., Nicolas, J.D., Osterhoff, M., Mittelstadt, H., Reuss, M., Harke, B., Wittmeier, A., Sprung, M., Koster, S., Salditt, T.: Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat. Commun. 9, 3641 (2018)

    Article  CAS  Google Scholar 

  5. Niemann, B., Rudolph, D., Schmahl, G.: Soft X-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications. Opt. Commun. 12(2), 160–163 (1974)

    Google Scholar 

  6. Chao, W., Anderson, E., Denbeaux, G.P., Harteneck, B., Liddle, J.A., Olynick, D.L., Pearson, A.L., Salmassi, F., Song, C., Attwood, D.T.: 20-nm-resolution soft x-ray microscopy demonstrated by use of multilayer test structures. Opt. Lett. 28(21), 2019–2021 (2003)

    Article  CAS  Google Scholar 

  7. Zeng, X., Duewer, F., Feser, M., Huang, C., Lyon, A., Tkachuk, A., Yun, W.: Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes. Appl. Opt. 47(13), 2376–2381 (2008)

    Article  Google Scholar 

  8. Chao, W., Harteneck, B.D., Liddle, J.A., Anderson, E.H., Attwood, D.T.: Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005)

    Article  CAS  Google Scholar 

  9. Chao, W., Fischer, P., Tyliszczak, T., Rekawa, S., Anderson, E., Naulleau, P.: Real space soft X-ray imaging at 10 nm spatial resolution. Opt. Express 20(9), 9777–9783 (2012)

    Article  CAS  Google Scholar 

  10. Chu, Y., Yi, J., De Carlo, F., Shen, Q., Lee, W.K., Wu, H.J., Wang, C.L., Wang, J., Liu, C.,Wang, C., Wu, S., Chien, C., Hwu, Y., Tkachuk, A., Yun, W., Feser, M., Liang, K., Yang, C., Je, J., Margaritondo, G.: Hard-x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. Appl. Phys. Lett. 92, 103119 (2008)

    Google Scholar 

  11. Liu, Y., Andrews, J.C., Meirer, F., Mehta, A., Gil, S.C., Sciau, P., Mester, Z., Pianetta, P.: Applications of hard X-ray full-field transmission X-ray microscopy at SSRL. AIP Conf. Proc. 1365, 357–360 (2011)

    Article  Google Scholar 

  12. Yuan, Q., Zhang, K., Hong, Y., Huang, W., Gao, K., Wang, Z., Zhu, P., Gelb, J., Tkachuk, A., Hornberger, B., Feser, M., Yun, W., Wu, Z.: A 30 nm-resolution hard X-ray microscope with X-ray fluorescence mapping capability at BSRF. J. Synchrotron Rad. 19, 1021–1028 (2012)

    Article  CAS  Google Scholar 

  13. Wang, J., Chen, Y. K., Yuan, Q., Tkachuk, A., Erdonmez, C., Hornberger, B., Feser, M.: Automated markerless full field hard X-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution. Appl. Phys. Lett. 100, 143107 (2012)

    Google Scholar 

  14. Jefimovs, K., Vila-Comamala, J., Stampanoni, M., Kaulich, B., David, C.: Beam-shaping condenser lenses for full-field transmission X-ray microscopy. J. Synchrotron Rad. 15, 106–108 (2008)

    Article  CAS  Google Scholar 

  15. Stampanoni, M., Mokso, R., Marone, F., Vila-Comamala, J., Gorelick, S., Trtik, P., Jefimovs, K., David, C.: Phase-contrast tomography at the nanoscale using hard X rays. Phys. Rev. B. 81, 140105(R) (2010)

    Article  Google Scholar 

  16. Andrade, V.D., Deriy, A., Wojcik, M., Gürsoy, G., Shu, D., Mooney, T., Peterson, K.M., Glowacki, A., Yue, K., Yang, X., Vescovi, R., Carlo, F.D.: A new transmission x-ray microscope for in-situ nano-tomography at the APS. SPIE Proc. 9967, 99670H (2016). https://doi.org/10.1117/12.2239449

    Article  Google Scholar 

  17. Longo, E., Sancey, L., Flenner, S., Kubec, A., Bonnin, A., David, C., Muller, M., Greving, I.: X-ray Zernike phase contrast tomography: 3D ROI visualization of mm-sized mice organ tissues down to sub-cellular components. Opt. Express 11(10), 5506–5517 (2020)

    Article  CAS  Google Scholar 

  18. Flenner, S., Storm, M., Kubec, A., Longo, E., Doring, F., Pelt, D.M., David, C., Muller, M., Greving, I.: Pushing the temporal resolution in absorption and Zernike phase contrast nanotomography: enabling fast in situ experiments. J. Synchrotron Rad. 27, 1339–1346 (2020)

    Article  Google Scholar 

  19. Meirer, F., Cabana, J., Liu, Y., Mehta, A., Andrews, J.C., Pianetta, P.: Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Rad. 18, 773–781 (2011)

    Article  CAS  Google Scholar 

  20. Wang, J., Chen-Wiegart, Y.C., Wang, J.: In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging. Chem. Commun. 49, 6480–6482 (2013)

    Article  CAS  Google Scholar 

  21. Xia, S., Mu, L., Xu, Z., Wang, J., Wei, C., Liu, L., Pianetta, P., Zhao, K., Yu, X., Lin, F., Liu, Y.: Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries. Nano Energy 53, 753–762 (2018)

    Article  CAS  Google Scholar 

  22. Jiang, Z., Li, J., Yang, Y., Mu, L., Wei, C., Yu, X., Pianetta, P., Zhao, K., Cloetens, P., Lin, F., Liu, Y.: Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes. Nat. Commun. 11, 2310 (2020)

    Article  CAS  Google Scholar 

  23. Lu, X., Daemi, S.R., Bertei, B., Kok, M.D.R., O’Regan, K.B., Rasha, L., Park, J., Hinds, G., Kendrick, E., Brett, D.J.L., Shearing, P.R.: Microstructural evolution of battery electrodes during calendering. Joule 4, 1–23 (2020)

    Article  Google Scholar 

  24. Zaman, W., Hortance, N., Dixit, M.B., De Andrade, V., Hatzell, K.B.: Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries. J. Mater. Chem. A 7, 23914–23921 (2019)

    Article  CAS  Google Scholar 

  25. Wei, C., Hong, Y., Tian, Y., Yu, X., Liu, Y., Pianetta, P.: Quantifying redox heterogeneity in single-crystalline LiCoO2 cathode particles. J. Synchrotron Rad. 27, 713–719 (2020)

    Article  CAS  Google Scholar 

  26. Xu, Y., Hu, E., Yang, F., Corbett, J., Sun, Z., Lyu, Y., Yu, X., Liu, Y., Yang, X., Li, H.: Structural integrity—Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques. Nano Energy 28, 164–171 (2016)

    Article  CAS  Google Scholar 

  27. Hong, Y., Huang, X., Wei, C., Wang, J., Zhang, J., Yan, H., Chu, Y., Pianetta, P., Xiao, R., Yu, X., Liu, Y., Li, H.: Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6, 2759–2769 (2020)

    Article  CAS  Google Scholar 

  28. Zhang, J., Li, Q., Ouyang, C., Yu, X., Ge, M., Huang, X., Hu, E., Ma, C., Li, S., Xiao, R., Yang, W., Chu, Y., Liu, Y., Yu, H., Yang, X., Huang, X., Chen, L., Li, H.: Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019)

    Google Scholar 

  29. Vanpeene, V., Villanova, J., King, A., Lestriez, B., Maire, E., Roue, L.: Dynamics of the morphological degradation of Si-based anodes for Li-ion batteries characterized by in situ synchrotron X-ray tomography. Adv. Energy Mater. 9, 1803947 (2019)

    Article  Google Scholar 

  30. Guan, Y., Li, W., Gong, Y., Liu, G., Zhang, X., Chen, J., Gelb, J., Yun, W., Xiong, Y., Tian, Y., Wang, H.: Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography. J. Power Sources 196, 1915–1919 (2011)

    Article  CAS  Google Scholar 

  31. Guo, P., Guan, Y., Liu, G., Liang, Z., Liu, J., Zhang, X., Xiong, Y., Tian, Y.: Modeling of gas transport with electrochemical reaction in Nickel–Yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method. J. Power Sources 327, 127–134 (2016)

    Article  CAS  Google Scholar 

  32. Miao, J., Forster, F., Levi, O.: Equally sloped tomography with oversampling reconstruction. Phys. Rev. B. 72, 052103 (2005)

    Google Scholar 

  33. Pelt, D.M., Sethian, J.A.: A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. USA 115(2), 254–259 (2018)

    Article  CAS  Google Scholar 

  34. Pelt, D.M., Batenburg, K.J., Sethian, J.A.: Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks. J. Imaging 4, 128 (2018)

    Article  Google Scholar 

  35. Yuan, Q., Zhang, K., Huang, W., Li, M., Hu, L., Yang, F., Zhu, P.: Conceptual design of TXM beamline at high energy photon source. AIP Conf. Proc. 2054, 050002 (2019)

    Google Scholar 

  36. Suzuki, Y., Takeuchi, A., Uesugi, K., Terada, Y., Nakazawa, H., Ohzawa, S., Aoyama, T., Nii, H., Handa, K.: Hard X-ray imaging microscopy using X-ray guide tube as beam condenser for field illumination. J. Phys.: Conf. Ser. 463, 012028 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxi Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, Q., Yu, X., Pan, H., Zhang, K. (2021). Advanced Transmission X-ray Microscopy for Energy Materials and Devices. In: Wang, J. (eds) Advanced X-ray Imaging of Electrochemical Energy Materials and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-5328-5_3

Download citation

Publish with us

Policies and ethics