Skip to main content

Brain–Computer Interface as a Potential Access Method for Communication in Non-verbal Children with Cerebral Palsy: A State-of-the-Art Review

  • Chapter
  • First Online:
Wearable/Personal Monitoring Devices Present to Future

Abstract

Cerebral palsy is an umbrella term that encompasses a group of disorders affecting movement and posture. The primary motor disorder is often accompanied by associated impairments of sensation, cognition, communication, perception, behavior, and/or seizure disorder. One in two children with cerebral palsy have a speech disorder, and one in three are non-verbal. Speech and motor difficulties may mask children’s cognitive capabilities, and recognition of their strengths and difficulties, which may limit the provision of opportunities for learning and development. A Brain–Computer Interface (BCI) may hold the key to unlock the potential in children with disabilities who today have limited means to learn, play, and communicate with currently available technology. Although BCI has been successfully applied on able-bodied adults, little information is currently available on BCI use in children with severe motor impairments who may need technology for supporting their communication. The aims of this state-of-the-art review are to describe the growing research field of BCIs and to share typical clinical applications as well as to provide evidence from the literature supporting the BCI application in children with cerebral palsy. The main engineering, assistive technology and neurorehabilitation databases were searched. Information related to inclusion criteria and study protocols was critically evaluated to determine BCI's successful implementation. This chapter highlights the five factors that can be attributed to the effective use of BCI: characteristics of the BCI, individual characteristics of the BCI user, type of feedback and instruction, and evaluation and ethical considerations and reports on the current use of BCI in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krahn GL (2011) WHO World Report on Disability: a review. Disabil Health J 4(3):141–142

    Article  Google Scholar 

  2. Odding E, Roebroeck ME, Stam HJ (2006) The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disabil Rehabil 28(4):183–191

    Article  Google Scholar 

  3. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109:8–14

    Google Scholar 

  4. Australian Cerebral Palsy Register (2018) Report of the Australian Cerebral Palsy Register Birth years 1995–2012. Cerebral Palsy Alliance, Sydney

    Google Scholar 

  5. Nordberg A, Miniscalco C, Lohmander A, Himmelmann K (2013) Speech problems affect more than one in two children with cerebral palsy: Swedish population-based study. Acta Paediatr 102(2):161–166

    Article  Google Scholar 

  6. Smits D, Ketelaar M, Gorter J, Van Schie P, Becher J, Lindeman E, Jongmans M (2011) Development of non-verbal intellectual capacity in school-age children with cerebral palsy. J Intell Disabil Res 55(6):550–562

    Article  Google Scholar 

  7. Fennell EB, Dikel TN (2001) Cognitive and neuropsychological functioning in children with cerebral palsy. J Child Neurol 16(1):58–63

    Article  Google Scholar 

  8. Novak I, Hines M, Goldsmith S, Barclay R (2012) Clinical prognostic messages from a systematic review on cerebral palsy. Pediatr:2012-0924

    Google Scholar 

  9. Vos RC, Becher JG, Ketelaar M, Smits D-W, Voorman JM, Tan SS, Reinders-Messelink HA, Dallmeijer AJ (2013) Developmental trajectories of daily activities in children and adolescents with cerebral palsy. Pediatrics 132(4):e915–e923

    Article  Google Scholar 

  10. Myrden A, Schudlo L, Weyand S, Zeyl T, Chau T (2014) Trends in communicative access solutions for children with cerebral palsy. J Child Neurol 29(8):1108–1118

    Article  Google Scholar 

  11. Akcakaya M, Peters B, Moghadamfalahi M, Mooney AR, Orhan U, Oken B, Erdogmus D, Fried-Oken M (2014) Noninvasive brain–computer interfaces for augmentative and alternative communication. IEEE Rev Biomed Eng 7:31–49

    Article  Google Scholar 

  12. Moghimi S, Kushki A, Marie Guerguerian A, Chau T (2013) A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities. Assist Technol 25(2):99–110

    Article  Google Scholar 

  13. Zhang J, Jadavji Z, Zewdie E, Kirton A (2019) Evaluating if children can use simple brain computer interfaces. Front Human Neurosci 13:24

    Article  Google Scholar 

  14. Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain–computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513

    Article  Google Scholar 

  15. Zickler C, Di Donna V, Kaiser V, Al-Khodairy A, Kleih S, Kübler A, Malavasi M, Mattia D, Mongardi S, Neuper C (2009) BCI applications for people with disabilities: defining user needs and user requirements. In: Assistive technology from adapted equipment to inclusive environments, AAATE, vol 25, pp 185–189

    Google Scholar 

  16. Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet JA, Hoyen HA, Keith MW (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389(10081):1821–1830

    Article  Google Scholar 

  17. Bogue R (2015) Robotic exoskeletons: a review of recent progress. Ind Rob 42(1):5–10

    Article  Google Scholar 

  18. Mak JN, Wolpaw JR (2009) Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng 2:187–199

    Article  Google Scholar 

  19. Chavarriaga R, Fried-Oken M, Kleih S, Lotte F, Scherer R (2017) Heading for new shores! Overcoming pitfalls in BCI design. Brain-Comput Interf 4(1–2):60–73

    Article  Google Scholar 

  20. Taherian S, Davies TC (2018) Caregiver and special education staff perspectives of a commercial brain-computer interface as access technology: a qualitative study. Brain-Comput Interf 5(2–3):73–87

    Article  Google Scholar 

  21. UNCPRD (2006) United Nations convention on the rights of persons with disabilities

    Google Scholar 

  22. United Nations. Educational, Scientific and Cultural Organization (2000) World education report 2000: the right to education: towards education for all throughout life. UNESCO, Paris, France

    Google Scholar 

  23. Geytenbeek JJ, Heim MM, Vermeulen RJ, Oostrom KJ (2010) Assessing comprehension of spoken language in nonspeaking children with cerebral palsy: application of a newly developed computer-based instrument. Augment Alternat Commun 26(2):97–107

    Article  Google Scholar 

  24. Branson D, Demchak M (2009) The use of augmentative and alternative communication methods with infants and toddlers with disabilities: A research review. Augment Altern Commun 25(4):274–286

    Article  Google Scholar 

  25. Sevcik RA (2006) Comprehension: an overlooked component in augmented language development. Disabil Rehabil 28(3):159–167

    Article  Google Scholar 

  26. Breshears JD, Gaona CM, Roland JL, Sharma M, Anderson NR, Bundy DT, Freudenburg ZV, Smyth MD, Zempel J, Limbrick DD (2011) Decoding motor signals from the pediatric cortex: implications for brain-computer interfaces in children. Pediatr 128(1):e160–e168

    Article  Google Scholar 

  27. Herold F, Wiegel P, Scholkmann F, Mueller NG (2018) Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in Exercise-Cognition science: a systematic Methodology-Focused review. J Clin Med 7(12):466

    Article  Google Scholar 

  28. Wang Y, Wu D (2017) Real-time fMRI-based brain computer interface: a review. International conference neural information processing. Springer, pp 833–842

    Chapter  Google Scholar 

  29. Pfurtscheller G, Allison BZ, Bauernfeind G, Brunner C, Solis Escalante T, Scherer R, Zander TO, Mueller-Putz G, Neuper C, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:3

    Google Scholar 

  30. Zephaniah PV, Kim JG (2014) Recent functional near infrared spectroscopy based brain computer interface systems: developments, applications and challenges. Biomed Eng Lett 4(3):223–230

    Article  Google Scholar 

  31. Donoghue JP, Nurmikko A, Black M, Hochberg LR (2007) Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol 579(3):603–611

    Article  Google Scholar 

  32. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  33. Bamdad M, Zarshenas H, Auais MA (2015) Application of BCI systems in neurorehabilitation: a scoping review. Disabil Rehabil Assist Technol 10(5):355–364

    Article  Google Scholar 

  34. Amiri S, Fazel-Rezai R, Asadpour V (2013) A review of hybrid brain-computer interface systems. Adv Hum-Comput Interact 2013:1

    Article  Google Scholar 

  35. He B, Gao S, Yuan H, Wolpaw JR (2013) Brain–computer interfaces. In: Neural engineering. Springer, pp 87–151

    Google Scholar 

  36. Kristo G, Höhne J, Ortner R, Reuderink B, Ramsey N (2015) BNCI Horizon 2020.

    Google Scholar 

  37. Coyle SM, Ward TE, Markham CM (2007) Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng 4(3):219

    Article  Google Scholar 

  38. Power SD, Falk TH, Chau T (2010) Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J Neural Eng 7(2):026002

    Google Scholar 

  39. Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Shimizu K, Birbaumer N (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. Neuro Image 34(4):1416–1427

    Google Scholar 

  40. Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N (2017) Brain–computer interface–based communication in the completely locked-in state. PLoS Biol 15(1):e1002593

    Google Scholar 

  41. Power SD, Kushki A, Chau T (2012) Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI. BMC Res Notes 5(1):141

    Article  Google Scholar 

  42. Weyand S, Chau T (2017) Challenges of implementing a personalized mental task near-infrared spectroscopy brain–computer interface for a non-verbal young adult with motor impairments. Dev Neurorehabil 20(2):99–107

    Article  Google Scholar 

  43. Mihara M, Miyai I (2016) Review of functional near-infrared spectroscopy in neurorehabilitation. Neurophotonics 3(3):031414–031414

    Article  Google Scholar 

  44. Blain S, Mihailidis A, Chau T (2008) Assessing the potential of electrodermal activity as an alternative access pathway. Med Eng Phys 30(4):498–505

    Article  Google Scholar 

  45. Fleury A, Sugar M, Chau T (2015) E-textiles in clinical rehabilitation: a scoping review. Electronics 4(1):173–203

    Article  Google Scholar 

  46. Lakshmi MR, Prasad DT, Prakash DVC (2014) Survey on EEG signal processing methods. Int J Adv Res Comput Sci Softw Eng 4(1)

    Google Scholar 

  47. Falk TH, Guirgis M, Power S, Chau TT (2011) Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. IEEE Trans Neural Syst Rehabil Eng 19(2):136–146

    Article  Google Scholar 

  48. Faress A, Chau T (2013) Towards a multimodal brain–computer interface: combining fNIRS and fTCD measurements to enable higher classification accuracy. Neuroimage 77:186–194

    Article  Google Scholar 

  49. Power SD, Kushki A, Chau T (2011) Towards a system-paced near-infrared spectroscopy brain–computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. J Neural Eng 8(6):066004

    Google Scholar 

  50. Vaid S, Singh P, Kaur C (2015) EEG signal analysis for BCI interface: a review. In: 2015 fifth international conference on advanced computing & communication technologies. IEEE, pp 143–147

    Google Scholar 

  51. Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: presence of an error potential. Clin Neurophysiol 111(12):2138–2144

    Article  Google Scholar 

  52. Kübler A, Holz E, Kaufmann T, Zickler C (2013) A user centred approach for bringing BCI controlled applications to end-users. Brain-Comput Interf Syst-Recent Progr Fut Prospects 1:19

    Google Scholar 

  53. Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH (2010) Brain–computer interfaces for speech communication. Speech Commun 52(4):367–379

    Article  Google Scholar 

  54. Guenther FH, Brumberg JS, Wright EJ, Nieto-Castanon A, Tourville JA, Panko M, Law R, Siebert SA, Bartels JL, Andreasen DS (2009) A wireless brain-machine interface for real-time speech synthesis. PloS One 4(12):e8218

    Google Scholar 

  55. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  56. Thompson DE, Gruis KL, Huggins JE (2014a) A plug-and-play brain-computer interface to operate commercial assistive technology. Disabil Rehabil Assist Technol 9(2):144–150

    Google Scholar 

  57. Käthner I, Kübler A, Halder S (2015) Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state. J Neuroeng Rehabil 12(1):76

    Article  Google Scholar 

  58. Huggins JE, Wren PA, Gruis KL (2011) What would brain-computer interface users want? Opinions and priorities of potential users with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12(5):318–324

    Article  Google Scholar 

  59. Zickler C, Riccio A, Leotta F, Hillian-Tress S, Halder S, Holz E, Staiger-Sälzer P, Hoogerwerf E-J, Desideri L, Mattia D (2011) A brain-computer interface as input channel for a standard assistive technology software. Clin EEG Neurosci 42(4):236–244

    Article  Google Scholar 

  60. Kaufmann T, Schulz S, Grünzinger C, Kübler A (2011) Flashing characters with famous faces improves ERP-based brain–computer interface performance. J Neural Eng 8(5):056016

    Google Scholar 

  61. Schreuder M, Höhne J, Blankertz B, Haufe S, Dickhaus T, Tangermann M (2013) Optimizing event-related potential based brain–computer interfaces: a systematic evaluation of dynamic stopping methods. J Neural Eng 10(3):036025

    Google Scholar 

  62. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279

    Article  Google Scholar 

  63. Lim J-H, Hwang H-J, Han C-H, Jung K-Y, Im C-H (2013) Classification of binary intentions for individuals with impaired oculomotor function:‘eyes-closed’SSVEP-based brain–computer interface (BCI). J Neural Eng 10(2):026021

    Google Scholar 

  64. Zhang Y, Xu P, Liu T, Hu J, Zhang R, Yao D (2012) Multiple frequencies sequential coding for SSVEP-based brain-computer interface. PloS One 7(3):e29519

    Google Scholar 

  65. Huggins JE, Moinuddin AA, Chiodo AE, Wren PA (2015) What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury. Arch Phys Med Rehabil 96(3):S38–S45. e35

    Google Scholar 

  66. Fried-Oken M, Mooney A, Peters B, Oken B (2015) A clinical screening protocol for the RSVP Keyboard brain–computer interface. Disabil Rehabil Assist Technol 10(1):11–18

    Article  Google Scholar 

  67. Daly I, Billinger M, Laparra-Hernández J, Aloise F, García ML, Faller J, Scherer R, Müller-Putz G (2013) On the control of brain-computer interfaces by users with cerebral palsy. Clin Neurophysiol 124(9):1787–1797

    Article  Google Scholar 

  68. Cook A, Hussey S (1995) Assistive technologies: principles and practice. MOSBY, Baltimore, USA

    Google Scholar 

  69. Fisher RS, Harding G, Erba G, Barkley GL, Wilkins A (2005) Photic-and pattern-induced seizures: a review for the epilepsy foundation of America Working Group. Epilepsia 46(9):1426–1441

    Article  Google Scholar 

  70. Huggins JE, Guger C, Allison B, Anderson CW, Batista A, Brouwer A-M, Brunner C, Chavarriaga R, Fried-Oken M, Gunduz A (2014) Workshops of the fifth international brain-computer interface meeting: defining the future. Brain-Comput Interf 1(1):27–49

    Article  Google Scholar 

  71. Giesbrecht E (2013) Application of the Human Activity Assistive Technology model for occupational therapy research. Aus Occ Ther J 60(4):230–240

    Article  Google Scholar 

  72. Takano K, Komatsu T, Hata N, Nakajima Y, Kansaku K (2009) Visual stimuli for the P300 brain–computer interface: a comparison of white/gray and green/blue flicker matrices. Clin Neurophysiol 120(8):1562–1566

    Article  Google Scholar 

  73. Furdea A, Halder S, Krusienski D, Bross D, Nijboer F, Birbaumer N, Kübler A (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiol 46(3):617–625

    Article  Google Scholar 

  74. Birbaumer N, Murguialday AR, Weber C, Montoya P (2009) Neurofeedback and brain–computer interface: clinical applications. Int Rev Neurobiol 86:107–117

    Article  Google Scholar 

  75. Schudlo LC, Chau T (2013) Dynamic topographical pattern classification of multichannel prefrontal NIRS signals: II. Online differentiation of mental arithmetic and rest. J Neural Eng 11(1):016003

    Google Scholar 

  76. Wolpaw J, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University Press, USA

    Google Scholar 

  77. Kleih S, Nijboer F, Halder S, Kübler A (2010) Motivation modulates the P300 amplitude during brain–computer interface use. Clin Neurophysiol 121(7):1023–1031

    Article  Google Scholar 

  78. Curran EA, Stokes MJ (2003) Learning to control brain activity: a review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain Cogn 51(3):326–336

    Article  Google Scholar 

  79. Friedrich EV, Neuper C, Scherer R (2013) Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PloS One 8(9):e76214

    Google Scholar 

  80. Kaplan AY, Shishkin SL, Ganin IP, Basyul IA, Zhigalov AY (2013) Adapting the P300-based brain–computer interface for gaming: a review. IEEE Trans Comput Intell AI Games 5(2):141–149

    Article  Google Scholar 

  81. Eskandari P, Erfanian A Improving the performance of brain-computer interface through meditation practicing. In: 30th annual international conference of IEEE engineering in medicine and biology society. IEEE, pp 662–665

    Google Scholar 

  82. Tan L-F, Dienes Z, Jansari A, Goh S-Y (2014) Effect of mindfulness meditation on brain–computer interface performance. Conscious Cogn 23:12–21

    Article  Google Scholar 

  83. Lakey CE, Berry DR, Sellers EW (2011) Manipulating attention via mindfulness induction improves P300-based brain–computer interface performance. J Neural Eng 8(2):025019

    Google Scholar 

  84. Tang Y-Y, Ma Y, Wang J, Fan Y, Feng S, Lu Q, Yu Q, Sui D, Rothbart MK, Fan M (2007) Short-term meditation training improves attention and self-regulation. Proc National Acad Sci 104(43):17152–17156

    Article  Google Scholar 

  85. Turner B (1999) International Organization for Standardization (ISO). The Statesman’s Yearbook 2000: The Politics, Cultures and Economies of the World:114

    Google Scholar 

  86. Ergonomics of human-system interaction - Part 210: Human-centred design for interactive systems (ISO 9241-210:2019)

    Google Scholar 

  87. Thompson DE, Blain-Moraes S, Huggins JE (2013) Performance assessment in brain-computer interface-based augmentative and alternative communication. Biomed Eng Online 12(1):43

    Article  Google Scholar 

  88. Thompson DE, Quitadamo LR, Mainardi L, Gao S, Kindermans P-J, Simeral JD, Fazel-Rezai R, Matteucci M, Falk TH, Bianchi L (2014b) Performance measurement for brain–computer or brain–machine interfaces: a tutorial. J Neural Eng 11(3):035001

    Google Scholar 

  89. Kübler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer NP (2001) Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil 82(11):1533–1539

    Article  Google Scholar 

  90. Perelmouter J, Birbaumer N (2000) A binary spelling interface with random errors. IEEE Trans Rehabil Eng 8(2):227–232

    Article  Google Scholar 

  91. Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Advances in psychology, vol 52. Elsevier, pp 139–183

    Google Scholar 

  92. Duvinage M, Castermans T, Petieau M, Seetharaman K, Hoellinger T, Cheron G, Dutoit T A subjective assessment of a P300 BCI system for lower-limb rehabilitation purposes. In: Eng Med Biol Soc, 2012 annual international conference of IEEE engineering in medicine and biology society (EMBC). IEEE, pp 3845–3849

    Google Scholar 

  93. Felton EA, Williams JC, Vanderheiden GC, Radwin RG (2012) Mental workload during brain–computer interface training. Ergon 55(5):526–537

    Article  Google Scholar 

  94. Hoonakker P, Carayon P, Gurses AP, Brown R, Khunlertkit A, McGuire K, Walker JM (2011) Measuring workload of ICU nurses with a questionnaire survey: the NASA Task Load Index (TLX). IISE Trans Healthc Syst Eng 1(2):131–143

    Article  Google Scholar 

  95. Rubio S, Díaz E, Martín J, Puente JM (2004) Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol 53(1):61–86

    Article  Google Scholar 

  96. Law MC, Baptiste S, Carswell A, McColl MA, Polatajko H, Pollock N (1998) Canadian occupational performance measure. Canadian Association of Occupational Therapists, Ottawa

    Google Scholar 

  97. Kiresuk TJ, Smith A, Cardillo JE (2014) Goal attainment scaling: applications, theory, and measurement. Psychology Press

    Book  Google Scholar 

  98. Wessels R, Persson J, Lorentsen Ø, Andrich R, Ferrario M, Oortwijn W, VanBeekum T, Brodin H, de Witte L (2002) IPPA: Individually prioritised problem assessment. Technol Disabil 14(3):141–145

    Article  Google Scholar 

  99. Cusick A, McIntyre S, Novak I, Lannin N, Lowe K (2006) A comparison of goal attainment scaling and the Canadian Occupational Performance Measure for paediatric rehabilitation research. Pediatr Rehabil 9(2):149–157

    Article  Google Scholar 

  100. Sakzewski L, Boyd R, Ziviani J (2007) Clinimetric properties of participation measures for 5-to 13-year-old children with cerebral palsy: a systematic review. Dev Med Child Neurol 49(3):232–240

    Article  Google Scholar 

  101. Crichton N (2001) Visual analogue scale (VAS). J Clin Nurs 10(5):706–706

    Google Scholar 

  102. Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A (2008) An auditory brain–computer interface (BCI). J Neurosci Method 167(1):43–50

    Article  Google Scholar 

  103. Rheinberg F, Vollmeyer R, Burns BD (2001) QCM: A questionnaire to assess current motivation in learning situations. Diagnostica 47(2):57–66

    Article  Google Scholar 

  104. Alcaide-Aguirre R, Warschausky S, Brown D, Aref A, Huggins J (2017) Asynchronous brain–computer interface for cognitive assessment in people with cerebral palsy. J Neur Eng 14(6):066001

    Google Scholar 

  105. Perego P, Turconi A, Andreoni G, Gagliardi C (2014) Cognitive ability assessment by brain-computer interface II: application of a BCI-based assessment method for cognitive abilities. Brain-Comput Interf 1(3–4):170–180

    Article  Google Scholar 

  106. Ehlers J, Valbuena D, Stiller A, Gräser A (2012) Age-specific mechanisms in an SSVEP-based BCI scenario: evidences from spontaneous rhythms and neuronal oscillators. Comput Intell Neurosci 2012:20

    Article  Google Scholar 

  107. Lim CG, Lee TS, Guan C, Fung DSS, Zhao Y, Teng SSW, Zhang H, Krishnan KRR (2012) A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. PloS One 7(10):e46692

    Google Scholar 

  108. Kolev V, Yordanova J (1997) Analysis of phase-locking is informative for studying event-related EEG activity. Biol Cybern 76(3):229–235

    Article  MATH  Google Scholar 

  109. Roland J, Miller K, Freudenburg Z, Sharma M, Smyth M, Gaona C, Breshears J, Corbetta M, Leuthardt EC (2011) The effect of age on human motor electrocorticographic signals and implications for brain–computer interface applications. J Neural Eng 8(4):046013

    Google Scholar 

  110. Kinney-Lang E, Auyeung B, Escudero J (2016) Expanding the (kaleido) scope: exploring current literature trends for translating electroencephalography (EEG) based brain–computer interfaces for motor rehabilitation in children. J Neural Eng 13(6):061002

    Google Scholar 

  111. Nijboer F, Clausen J, Allison BZ, Haselager P (2013) The asilomar survey: stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics 6(3):541–578

    Article  Google Scholar 

  112. Specker Sullivan L, Illes J (2016) Beyond ‘communication and control’: towards ethically complete rationales for brain-computer interface research. Brain-Comput Interf 3(3):156–163

    Article  Google Scholar 

  113. Luo A, Sullivan TJ (2010) A user-friendly SSVEP-based brain–computer interface using a time-domain classifier. J Neural Eng 7(2):026010

    Google Scholar 

  114. Vlek RJ, Steines D, Szibbo D, Kübler A, Schneider M-J, Haselager P, Nijboer F (2012) Ethical issues in brain–computer interface research, development, and dissemination. J Neurol Phys Ther 36(2):94–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Karlsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karlsson, P., Orlandi, S., Zhao, H., McEwan, A. (2022). Brain–Computer Interface as a Potential Access Method for Communication in Non-verbal Children with Cerebral Palsy: A State-of-the-Art Review. In: Gargiulo, G.D., Naik, G.R. (eds) Wearable/Personal Monitoring Devices Present to Future. Springer, Singapore. https://doi.org/10.1007/978-981-16-5324-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5324-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5323-0

  • Online ISBN: 978-981-16-5324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics