Skip to main content

Zebrafish: A Potential Preclinical Model for Neurological Research in Modern Biology

  • Chapter
  • First Online:
Zebrafish Model for Biomedical Research

Abstract

Zebrafish have recently acquired the attention of the research community as a model to study neurological pathologies and behavioural anomalies. The small size and high fecundity have made the zebrafish highly suitable for high-throughput screening. The relatively simple organisation of its nervous system and the optically transparent embryos allow real-time neurological imaging of the zebrafish embryos. Further, genetic malleability and highly varied behavioural repertoire increase its suitability as a model for neurological studies. The recent increase in ageing population and the number of patients suffering with neurodegeneration pose the pressing need for effective models for the study of neurological diseases. The current dearth of therapies for the treatment of neurological disorders is mainly due to the lack of absolute and robust in vivo models. Interestingly, zebrafish models have been found to successfully simulate Alzheimer’s disease (AD) and tauopathy pathologies along with other neurodegenerative conditions. This chapter summarizes the contemporary research studies that employ zebrafish as neurological models for the development of improved translational therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramsson A et al (2013) The zebrafish amyloid precursor protein-b is required for motor neuron guidance and synapse formation. Dev Biol 381(2):377–388

    Article  CAS  PubMed  Google Scholar 

  • Alford S et al (2018) Obesity as a risk factor for Alzheimer's disease: weighing the evidence. Obes Rev 19(2):269–280

    Article  CAS  PubMed  Google Scholar 

  • Amo R et al (2010) Identification of the zebrafish ventral habenula as a homolog of the mammalian lateral habenula. J Neurosci 30(4):1566–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anichtchik O et al (2008) Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci 28(33):8199–8207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antinucci P, Hindges R (2016) A crystal-clear zebrafish for in vivo imaging. Sci Rep 6:29490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama Y et al (2015) A novel method for rearing zebrafish by using freshwater rotifers (Brachionus calyciflorus). Zebrafish 12(4):288–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Apostolova LG (2016) Alzheimer disease. Continuum (Minneap Minn) 22(2 Dementia):419–434

    Google Scholar 

  • Avdesh A et al (2012) Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J Vis Exp 69:e4196

    Google Scholar 

  • Bai Q, Burton EA (2011) Zebrafish models of tauopathy. Biochim Biophys Acta 1812(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Bai Q et al (2007) Generation of a transgenic zebrafish model of tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res 35(19):6501–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey J, Oliveri A, Levin ED (2013) Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res C Embryo Today 99(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baraban SC et al (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768

    Article  CAS  PubMed  Google Scholar 

  • Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410

    Article  PubMed  Google Scholar 

  • Baronio D et al (2018) Embryonic exposure to valproic acid affects the histaminergic system and the social behaviour of adult zebrafish (Danio rerio). Br J Pharmacol 175(5):797–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basnet RM et al (2019) Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicine 7(1):23

    Google Scholar 

  • Becker CG, Becker T (2008) Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26(2–3):71–80

    PubMed  Google Scholar 

  • Beffagna G (2019) Zebrafish as a smart model to understand regeneration after heart injury: how fish could help humans. Front Cardiovasc Med 6:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekris LM et al (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23(4):213–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Best JD, Alderton WK (2008) Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat 4(3):567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattarai P et al (2017a) Modeling amyloid-beta42 toxicity and neurodegeneration in adult zebrafish brain. J Vis Exp (128):56014

    Google Scholar 

  • Bhattarai P et al (2017b) The effects of aging on amyloid-β42-induced neurodegeneration and regeneration in adult zebrafish brain. Neurogenesis (Austin) 4(1):e1322666

    Article  CAS  Google Scholar 

  • Bhattarai P et al (2020) Neuron-glia interaction through serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol 18(1):e3000585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bondi MW, Edmonds EC, Salmon DP (2017) Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc 23(9–10):818–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury J (2004) Small fish, big science. PLoS Biol 2(5):E148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford YM et al (2017) Zebrafish models of human disease: gaining insight into human disease at ZFIN. ILAR J 58(1):4–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braubach OR, Fine A, Croll RP (2012) Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio rerio). J Comp Neurol 520(11):2317–2339, Spc1

    Google Scholar 

  • Bretaud S et al (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100(6):1626–1635

    CAS  PubMed  Google Scholar 

  • Brown K (2017) An interview with Christiane Nüsslein-Volhard. Development 144(21):3851

    Article  PubMed  Google Scholar 

  • Bruni G et al (2016) Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12(7):559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burré J et al (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calvo-Ochoa E, Byrd-Jacobs CA (2019) The olfactory system of zebrafish as a model for the study of neurotoxicity and injury: implications for neuroplasticity and disease. Int J Mol Sci 20(7):1639

    Article  CAS  PubMed Central  Google Scholar 

  • Chandra S et al (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A 101(41):14966–14971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chege SW et al (2012) Expression and function of KCNQ channels in larval zebrafish. Dev Neurobiol 72(2):186–198

    Article  CAS  PubMed  Google Scholar 

  • Chen C-M et al (2014) FBXO7 Y52C polymorphism as a potential protective factor in Parkinson's disease. PLoS One 9(7):e101392–e101392

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng R-K, Jesuthasan SJ, Penney TB (2014) Zebrafish forebrain and temporal conditioning. Philos Trans R Soc Lond Ser B Biol Sci 369(1637):20120462

    Article  CAS  Google Scholar 

  • Connaughton VP, Nelson R, Bender AM (2008) Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 25(2):139–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowell JK (2014) LGI1: from zebrafish to human epilepsy. Prog Brain Res 213:159–179

    Article  PubMed  Google Scholar 

  • Cunvong K et al (2013) Amyloid-β increases capillary bed density in the adult zebrafish retina. Invest Ophthalmol Vis Sci 54(2):1516–1521

    Article  PubMed  CAS  Google Scholar 

  • Das S, Rajanikant GK (2014) Huntington disease: can a zebrafish trail leave more than a ripple? Neurosci Biobehav Rev 45:258–261

    Article  CAS  PubMed  Google Scholar 

  • Davis EE, Frangakis S, Katsanis N (2014) Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta 1842(10):1960–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P T 40(8):504–532

    PubMed  PubMed Central  Google Scholar 

  • Dong J, Stuart GW (2004) Transgene manipulation in zebrafish by using recombinases. Methods Cell Biol 77:363–379

    Article  CAS  PubMed  Google Scholar 

  • Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256

    Article  CAS  PubMed  Google Scholar 

  • Eddins D et al (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 32(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng CW et al (2014) Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish 11(3):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkbeiner S (2011) Huntington’s disease. Cold Spring Harb Perspect Biol 3(6):a007476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flinn L et al (2009) Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain 132(6):1613–1623

    Article  PubMed  Google Scholar 

  • Furlan G et al (2017) Life-long neurogenic activity of individual neural stem cells and continuous growth establish an outside-in architecture in the teleost pallium. Curr Biol 27(21):3288–3301.e3

    Google Scholar 

  • Ganz J et al (2014) Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Res 3:308

    Google Scholar 

  • Gao Y et al (2017) Genetic manipulation in zebrafish. Sheng Wu Gong Cheng Xue Bao 33(10):1674–1692

    CAS  PubMed  Google Scholar 

  • Geisler R et al (2016) Maintenance of zebrafish lines at the European Zebrafish Resource Center. Zebrafish 13(Suppl 1):S19–S23

    Google Scholar 

  • Gemberling M et al (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29(11):611–620

    Article  CAS  PubMed  Google Scholar 

  • Gioacchini G et al (2010) Increase of fecundity by probiotic administration in zebrafish (Danio rerio). Reproduction 140(6):953–959

    Article  CAS  PubMed  Google Scholar 

  • Godoy R et al (2015) Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae. J Neurochem 135(2):249–260

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith JR, Jobin C (2012) Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol 2012:817341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greten-Harrison B et al (2010) αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci U S A 107(45):19573–19578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groth C et al (2002) Identification of a second presenilin gene in zebrafish with similarity to the human Alzheimer’s disease gene presenilin2. Dev Genes Evol 212(10):486–490

    Article  CAS  PubMed  Google Scholar 

  • Guo S (2009) Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discovery 4(7):715–726

    Article  CAS  Google Scholar 

  • Gut P et al (2017) Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol Rev 97(3):889–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Lovera C et al (2017) The potential of zebrafish as a model organism for improving the translation of genetic anticancer nanomedicines. Genes 8(12):349

    Article  CAS  Google Scholar 

  • Henshall TL et al (2009) Selective neuronal requirement for huntingtin in the developing zebrafish. Hum Mol Genet 18(24):4830–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzman NG et al (2016) Learning to fish with genetics: a primer on the vertebrate model Danio rerio. Genetics 203(3):1069–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoo JY et al (2016) Zebrafish: a versatile animal model for fertility research. Biomed Res Int 2016:9732780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hortopan GA, Dinday MT, Baraban SC (2010) Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J Neurosci 30(41):13718–13728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horzmann KA, Freeman JL (2016) Zebrafish get connected: investigating neurotransmission targets and alterations in chemical toxicity. Toxics 4(3):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh DJ, Liao CF (2002) Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol 137(6):782–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q et al (2017) Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. Chemosphere 173:373–379

    Article  CAS  PubMed  Google Scholar 

  • Inamdar NN et al (2007) Parkinson's disease: genetics and beyond. Curr Neuropharmacol 5(2):99–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham PW (1997) Zebrafish genetics and its implications for understanding vertebrate development. Hum Mol Genet 6(10):1755–1760

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Newman M, Lardelli M (2018) The zebrafish orthologue of familial Alzheimer’s disease gene PRESENILIN 2 is required for normal adult melanotic skin pigmentation. PLoS One 13(10):e0206155

    Google Scholar 

  • Jimenez-Sanchez M et al (2017) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harbor Perspect Med 7(7):a024240

    Article  CAS  Google Scholar 

  • Kabashi E et al (2011) Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 1812(3):335–345

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35(2):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlovich CA et al (1998) Characterization of the Huntington's disease (HD) gene homologue in the zebrafish Danio rerio. Gene 217(1–2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, von Hofsten J, Olsson PE (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol 3(6):522–527

    Article  CAS  Google Scholar 

  • Kettleborough RNW et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496(7446):494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan KM et al (2017) Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 174(13):1925–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH et al (2010) Scopolamine-induced learning impairment reversed by physostigmine in zebrafish. Neurosci Res 67(2):156–161

    Article  CAS  PubMed  Google Scholar 

  • Kinth P, Mahesh G, Panwar Y (2013) Mapping of zebrafish research: a global outlook. Zebrafish 10(4):510–517

    Google Scholar 

  • Kizil C et al (2012) Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 72(3):429–461

    Article  PubMed  Google Scholar 

  • Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harbor Perspect Med 2(1):a008888

    Article  Google Scholar 

  • Koehler D, Williams FE (2018) Utilizing zebrafish and okadaic acid to study Alzheimer’s disease. Neural Regen Res 13(9):1538–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundap UP et al (2017) Zebrafish as a model for epilepsy-induced cognitive dysfunction: a pharmacological, biochemical and behavioral approach. Front Pharmacol 8:515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kyzar EJ et al (2012) Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog Neuro-Psychopharmacol Biol Psychiatry 37(1):194–202

    Article  CAS  Google Scholar 

  • Lam CS, Korzh V, Strahle U (2005) Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur J Neurosci 21(6):1758–1762

    Article  PubMed  Google Scholar 

  • Leimer U et al (1999) Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 38(41):13602–13609

    Article  CAS  PubMed  Google Scholar 

  • Li M et al (2018) Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food Chem Toxicol 119:6–13

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Baraban SC (2019) Network properties revealed during multi-scale calcium imaging of seizure activity in zebrafish. eNeuro 6(1):ENEURO.0041-19.2019

    Google Scholar 

  • Liu J et al (2007) A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc Natl Acad Sci U S A 104(35):13990–13995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes da Fonseca T et al (2013) The zebrafish homologue of Parkinson’s disease ATP13A2 is essential for embryonic survival. Brain Res Bull 90:118–126

    Article  CAS  PubMed  Google Scholar 

  • Lulla A et al (2016) Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ Health Perspect 124(11):1766–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumsden AL et al (2007) Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 16(16):1905–1920

    Article  CAS  PubMed  Google Scholar 

  • Makhija DT, Jagtap AG (2014) Studies on sensitivity of zebrafish as a model organism for Parkinson's disease: comparison with rat model. J Pharmacol Pharmacother 5(1):39–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin B et al (2005) Class II G protein-coupled receptors and their ligands in neuronal function and protection. NeuroMolecular Med 7(1–2):3–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui H, Sugie A (2017) An optimized method for counting dopaminergic neurons in zebrafish. PLoS One 12(9):e0184363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKinley ET et al (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 141(2):128–137

    Article  CAS  PubMed  Google Scholar 

  • Meshalkina DA et al (2017) Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim (NY) 46(10):378–387

    Article  Google Scholar 

  • Mueller T (2012) What is the thalamus in zebrafish? Front Neurosci 6:64

    Google Scholar 

  • Mueller T et al (2011) The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381:95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano N et al (2017) PI3K/AKT signaling mediated by G proteincoupled receptors is involved in neurodegenerative Parkinson’s disease (review). Int J Mol Med 39(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Neelkantan N et al (2013) Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds. ACS Chem Neurosci 4(8):1137–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nellore J, Nandita P (2015) Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol Rep 2:950–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nery LR et al (2017) Presenilin-1 targeted morpholino induces cognitive deficits, increased brain Aβ1−42 and decreased synaptic marker PSD-95 in zebrafish larvae. Neurochem Res 42(10):2959–2967

    Article  CAS  PubMed  Google Scholar 

  • Neueder A et al (2017) The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington's disease patients. Sci Rep 7(1):1307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neugroschl J, Wang S (2011) Alzheimer’s disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med 78(4):596–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman M, Ebrahimie E, Lardelli M (2014) Using the zebrafish model for Alzheimer's disease research. Front Genet 5:189–189

    PubMed  PubMed Central  Google Scholar 

  • Nopoulos PC (2016) Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 18(1):91–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Nüsslein-Volhard C (2012) The zebrafish issue of development. Development 139(22):4099

    Google Scholar 

  • Okamoto H, Agetsuma M, Aizawa H (2012) Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Dev Neurobiol 72(3):386–394

    Article  PubMed  Google Scholar 

  • Panula P et al (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3(2):235–247

    Article  CAS  PubMed  Google Scholar 

  • Paquet D et al (2009) A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest 119(5):1382–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parng C et al (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1(1 Pt 1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Patowary A et al (2013) A sequence-based variation map of zebrafish. Zebrafish 10(1):15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegueroles J et al (2018) Obesity and Alzheimer’s disease, does the obesity paradox really exist? A magnetic resonance imaging study. Oncotarget 9(78):34691–34698

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhudesai S et al (2012) A novel “molecular tweezer” inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics 9(2):464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhudesai S et al (2016) LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res 94(8):717–735

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar M et al (2018) Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor seficits by its antioxidative and anti-inflammatory properties in parkinsonian rats. Pharmacogn Mag 14(53):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G et al (2011) Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish. PLoS One 6(6):e20630–e20630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico EP et al (2011) Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol 33(6):608–617

    Article  CAS  PubMed  Google Scholar 

  • Rizek P, Kumar N, Jog MS (2016) An update on the diagnosis and treatment of Parkinson disease. CMAJ 188(16):1157–1165

    Google Scholar 

  • Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem S, Kannan RR (2018) Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Dis 4:45

    Article  Google Scholar 

  • Sallinen V et al (2010) Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish. Neurobiol Dis 40(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Santana S, Rico EP, Burgos JS (2012) Can zebrafish be used as animal model to study Alzheimer’s disease? Am J Neurodegener Dis 1(1):32–48

    PubMed  PubMed Central  Google Scholar 

  • Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7):2337–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarath Babu N et al (2016) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced Parkinson's disease in zebrafish. Proteomics 16(9):1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Savio LE et al (2012) Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog Neuro-Psychopharmacol Biol Psychiatry 36(2):258–263

    Article  CAS  Google Scholar 

  • Schachter AS, Davis KL (2000) Alzheimer’s disease. Dialogues Clin Neurosci 2(2):91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiffer NW et al (2007) Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model. J Biol Chem 282(12):9195–9203

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish—from embryo to adult. Neural Dev 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubert J et al (2014) Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 46(12):1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Seibt KJ et al (2011) Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio). Behav Brain Res 224(1):135–139

    Article  CAS  PubMed  Google Scholar 

  • Singleman C, Holtzman NG (2014) Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research. Zebrafish 11(4):396–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Skaggs K, Goldman D, Parent JM (2014) Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia 62(12):2061–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Song P, Pimplikar SW (2012) Knockdown of amyloid precursor protein in zebrafish causes defects in motor axon outgrowth. PLoS One 7(4):e34209–e34209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitsbergen JM, Kent ML (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicol Pathol 31(Suppl):62–87

    Google Scholar 

  • Stehr CM et al (2006) The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. Toxicol Sci 92(1):270–278

    Article  CAS  PubMed  Google Scholar 

  • Stewart A et al (2012) Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 62(1):135–143

    Article  CAS  PubMed  Google Scholar 

  • Suls A et al (2013) De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 93(5):967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarthout JT, Raisinghani M, Cui X (2011) Zinc finger nucleases: a new era for transgenic animals. Ann Neurosci 18(1):25–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng Y et al (2010) Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. Hum Mol Genet 19(22):4409–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiedeken JA, Ramsdell JS (2007) Embryonic exposure to domoic acid increases the susceptibility of zebrafish larvae to the chemical convulsant pentylenetetrazole. Environ Health Perspect 115(11):1547–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timme-Laragy AR, Karchner SI, Hahn ME (2012) Gene knockdown by morpholino-modified oligonucleotides in the zebrafish (Danio rerio) model: applications for developmental toxicology. Methods Mol Biol 889:51–71

    Google Scholar 

  • Turner KJ et al (2016) Afferent connectivity of the zebrafish habenulae. Front Neural Circuits 10:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Ünal İ et al (2019) Rotenone impairs oxidant/antioxidant balance both in brain and intestines in zebrafish. Int J Neurosci 129(4):363–368

    Article  PubMed  CAS  Google Scholar 

  • Ung CY et al (2015) Mosaic zebrafish transgenesis for functional genomic analysis of candidate cooperative genes in tumor pathogenesis. J Vis Exp (97):52567

    Google Scholar 

  • van Bebber F et al (2013) Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes. J Neurochem 127(4):471–481

    Article  PubMed  CAS  Google Scholar 

  • Varga M et al (2018) Zebrafish models of rare hereditary pediatric diseases. Diseases 6(2):43

    Google Scholar 

  • Vaz RL, Outeiro TF, Ferreira JJ (2018) Zebrafish as an animal model for rrug discovery in Parkinson’s disease and other movement disorders: a systematic review. Front Neurol 9:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayanathan Y et al (2017) 6-OHDA-lesioned adult zebrafish as a useful Parkinson’s disease model for dopaminergic neuroregeneration. Neurotox Res 32(3):496–508

    Article  CAS  PubMed  Google Scholar 

  • Vogel G (2000) GENOMICS: Sanger will sequence zebrafish genome. Science 290(5497):1671b

    Google Scholar 

  • Wafer LN et al (2016) Effects of environmental enrichment on the fertility and fecundity of zebrafish (Danio rerio). J Am Assoc Lab Anim Sci 55(3):291–294

    PubMed  PubMed Central  Google Scholar 

  • Wang M et al (2011) Eriocaulon buergerianum extract protects PC12 cells and neurons in zebrafish against 6-hydroxydopamine-induced damage. Chin Med 6(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2016) DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms. Genes Brain Behav 15(8):702–710

    Article  CAS  PubMed  Google Scholar 

  • Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 7:F1000 Faculty Rev-1161

    Google Scholar 

  • Wiatr K et al (2018) Huntington disease as a neurodevelopmental disorder and early signs of the disease in stem cells. Mol Neurobiol 55(4):3351–3371

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Lardelli M (2013) The development of an in vivo γ-secretase assay using zebrafish embryos. J Alzheimers Dis 36(3):521–534

    Article  CAS  PubMed  Google Scholar 

  • Wilson SW, Brand M, Eisen JS (2002) Patterning the zebrafish central nervous system. Results Probl Cell Differ 40:181–215

    Article  CAS  PubMed  Google Scholar 

  • Woods IG et al (2000) A comparative map of the zebrafish genome. Genome Res 10(12):1903–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B-K et al (2016) Multiple signaling factors and drugs alleviate neuronal death induced by expression of human and zebrafish tau proteins in vivo. J Biomed Sci 23:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia W (2010) Exploring Alzheimer's disease in zebrafish. J Alzheimers Dis 20(4):981–990

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Dawson TM, Dawson VL (2017) Models of LRRK2-associated Parkinson’s disease. Adv Neurobiol 14:163–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Cheng XE (2017) Zebrafish tracking using convolutional neural networks. Sci Rep 7:42815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2017) Effects of picrotoxin on zebrafish larvae behaviors: a comparison study with PTZ. Epilepsy Behav 70(Pt A):224–231

    Google Scholar 

  • Zakhary SM et al (2011) A behavioral and molecular analysis of ketamine in zebrafish. Synapse 65(2):160–167

    Google Scholar 

  • Zdebik AA et al (2013) Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings. PLoS One 8(11):e79765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X et al (2013) An over expression APP model for anti-Alzheimer disease drug screening created by zinc finger nuclease technology. PLoS One 8(11):e75493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LQ et al (2015a) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J Ethnopharmacol 170:8–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2015b) Pharmacological characterization of an antisense knockdown zebrafish model of Dravet syndrome: inhibition of epileptic seizures by the serotonin agonist fenfluramine. PLoS One 10(5):e0125898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X-f, Thompson M, Xu Y-H (2016) Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease. Lab Investig 96(5):496–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from the DBT-RA Program in Biotechnology and Life Sciences and DBT-Nanobiotechnology Program (San. No. BT/PR6765/NNT/28/618/2012), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajaretinam Rajesh Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saleem, S., Kannan, R.R. (2022). Zebrafish: A Potential Preclinical Model for Neurological Research in Modern Biology. In: Bhandari, P.R., Bharani, K.K., Khurana, A. (eds) Zebrafish Model for Biomedical Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-5217-2_14

Download citation

Publish with us

Policies and ethics