Skip to main content

Pectinases: Production, Harvest, Recovery, and Potential Industrial Application

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology
  • 2244 Accesses

Abstract

Pectinases are a group of enzymes that lyse pectin. Pectins are polysaccharides, and they are found abundantly in plant cell walls. The feature of pectinolytic activity is exploited by the industry. With the advances, the industry has developed a focus on various microbial sources for the efficient production of pectinolytic enzymes. The bioprocess principles are applied extensively for the production of pectinase enzymes for efficient commercial production and harvest. Many factors affect the yield of pectinases, which are overlooked, and the shortcomings are improved; this is done with the help of understanding and the research made on studying the biochemical properties of pectinases. The purification and characterization of pectinase enzymes have a key role in controlling the purity and standards. With the help of studies on the mechanism of action of pectinases, it is found to have wide applications, which range in the field of the brewery, juice making, jam making, retting, plant fiber making, paper making, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HG:

Homogalacturonan

PE:

Pectinesterase

PG:

Polygalacturonases

PGL:

Polygalacturonate lyase

PL:

Pectin lyase

PMG:

Polymethyl galacturonase

RGI:

Rhamnogalacturonan I

RGII:

Rhamnogalacturonan II

References

  • Agrios G (2009) Plant pathology. Elsevier, Amsterdam

    Google Scholar 

  • Aguilar G, Huitron C (1987) Stimulation of the production of extracellular pectinolytic activities of Aspergillus sp. by galacturonic acid and glucose addition. Enzym Microb Technol 9(11):690–696

    Article  CAS  Google Scholar 

  • Amin F, Bhatti HN, Bilal M, Asgher M (2017) Multiple parameter optimizations for enhanced biosynthesis of exopolygalacturonase enzyme and its application in fruit juice clarification. Int J Food Eng 13(2). https://doi.org/10.1515/ijfe-2016-0256

  • Bajpai P, Bajpai PK (1998) Deinking with enzymes: a review. Tappi J 81:111–117

    CAS  Google Scholar 

  • Baker RA, Wicker L (1996) Current and potential application of enzyme infusion in the food industry. Trends Food Sci Technol 7:279–284

    Article  CAS  Google Scholar 

  • Bemiller J (1986) ChemInform abstract: an introduction to pectins: structure and properties. Chemischer Informationsdienst 17(48). https://doi.org/10.1002/chin.198648383

  • Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Bruhlman F, Kim KS, Zimmerman W, Fiecher A (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl Environ Microbial 60:2107–2112

    Article  Google Scholar 

  • Brühlmann F (1995) Purification and characterization of an extracellular pectate lyase from an Amycolata sp. Appl Environ Microbiol 61(10):3580–3585. https://doi.org/10.1128/aem.61.10.3580-3585.1995

    Article  PubMed  PubMed Central  Google Scholar 

  • Caffall K, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344(14):1879–1900. https://doi.org/10.1016/j.carres.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  • Cao J (2012) The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS One 7(10):e46944. https://doi.org/10.1371/journal.pone.0046944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr JG (1985) Tea, coffee and cocoa. In: Microbiology of fermented food, vol 2. Elsevier, Amsterdam, pp 133–154

    Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity. In: Molecular genetics and the evolution of anal design, 2nd edn. Blackwell Scientific, Malden

    Google Scholar 

  • Christensen TM, Nielsen JE, Kreiberg JD, Rasmussen P, Mikkelsen JD (2002) Pectin methyl esterase from orange fruit: characterization and localization by in situ hybridization and immunohistochemistry. Planta 206:493–503

    Article  Google Scholar 

  • Coutinho PM, Stam M, Blanc E, Henrissat B (2003) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565

    Article  CAS  PubMed  Google Scholar 

  • Dixit VS, Kumar AR, Pant A, Khan MI (2004) Low molecular mass pectate lyase from Fusarium moniliforme: similar modes of chemical and thermal denaturation. Biochem Biophys Res Commun 315:477–484

    Article  CAS  PubMed  Google Scholar 

  • Doco T, Williams P, Vidal S, Pellerin P (1997) Rhamnogalacturonan II, a dominant polysaccharide in juices produced by enzymic liquefaction of fruits and vegetables. Carbohydr Res 297(2):181–186. https://doi.org/10.1016/s0008-6215(96)00260-1

    Article  CAS  PubMed  Google Scholar 

  • El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18:1–13. https://doi.org/10.1186/s12896-018-0481-7

    Article  CAS  Google Scholar 

  • Fawole O, Odunfa S (2003) Some factors affecting production of pectic enzymes by Aspergillus niger. Int Biodeter Biodegr 52(4):223–227. https://doi.org/10.1016/s0964-8305(03)00094-5

    Article  CAS  Google Scholar 

  • Finkler ATJ et al (2017) Intermittent agitation contributes to uniformity across the bed during pectinase production by Aspergillus niger grown in solid-state fermentation in a pilot-scale packed-bed bioreactor. Biochem Eng J 121:1–12. https://doi.org/10.1016/j.bej.2017.01.011

    Article  CAS  Google Scholar 

  • Fukuoka S, Kamishima H, Sode K, Karube I (1990) Facile isolation of endo-pectate lyase from Erwinia carotovora based on electrostatic interaction. Appl Biochem Biotechnol 26(3):239–248. https://doi.org/10.1007/bf02921505

    Article  CAS  PubMed  Google Scholar 

  • Gailing MF, Guibert A, Combes D (2000) Fractional factorial designs applied to enzymatic sugar beet pulps pressing improvement. Bioprocess Eng 22:69–74

    Article  CAS  Google Scholar 

  • Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6(1):1–13. https://doi.org/10.1007/s13205-016-0371-4

    Article  Google Scholar 

  • Ghildyal NP, Ramakrishna SV, Nirmala P, Devi BK, Lowsane BK, Asthana HN (1981) Large scale production of pectolytic enzyme by solid state fermentation. J Food Sci Technol 18:243–251

    Google Scholar 

  • Giacobbe S, Pepe O, Ventorino V, Birolo L, Vinciguerra R, Faraco V (2014) Identification and characterisation of a pectinolytic enzyme from Paenibacillus xylanolyticus. Bioresources 9(3):4873. https://doi.org/10.15376/biores.9.3.4873-4887

    Article  Google Scholar 

  • Govindaraji P, Vuppu S (2020) Characterisation of pectin and optimization of pectinase enzyme from novel Streptomyces fumigatiscleroticus VIT-SP4 for drug delivery and concrete crack-healing applications: an eco-friendly approach. Saudi J Biol Sci 27(12):3529–3540. https://doi.org/10.1016/j.sjbs.2020.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gummadi S, Panda T (2003) Purification and biochemical properties of microbial pectinases—a review. Process Biochem 38(7):987–996. https://doi.org/10.1016/s0032-9592(02)00203-0

    Article  CAS  Google Scholar 

  • Hadj TN, Ayadi M, Trigui S, Bouabdollah F, Gargouri A (2002) Hyper production of pectinase activities by fully constitutive mutant (CT 1) of Penicillium occitanis. Enzyme Microb Technol 30:662–666

    Article  Google Scholar 

  • Hayashi K, Inoue Y, Shiga M, Sato S, Takano R, Hirayae K, Hibi T, Hara S (1997) Pectinolytic enzymes from Pseudomonas marginalis MAFF 03-01173. Phytochemistry 45:1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Herron SR, Benen JA, Scavetta RD, Visser J, Jurnak R (2000) Structure and function of pectic enzymes virulence factors of plant pathogens. Proc Natl Acad Sci U S A 97:8762–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hours RA, Voget CE, Ertola RJ (1988) Some factors a ecting pectinase production from apple pomace in solid cultures. Biol Wastes 24:147–157

    Article  CAS  Google Scholar 

  • Jayani R, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40(9):2931–2944. https://doi.org/10.1016/j.procbio.2005.03.026

    Article  CAS  Google Scholar 

  • Kertesz ZI, Baker GL, Joseph GH, Mottern HH, Olsen AG (1944) Report of the Committee for the Revision of the Nomenclature of Pectic Substances. Chem Eng News 22:105–106. https://doi.org/10.1021/cen-v022n002.p105

    Article  CAS  Google Scholar 

  • Khatri BP, Bhattarai T, Shrestha S, Maharjan J (2015) Alkaline thermo-stable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha Nepal. SpringerPlus 4:1–8. https://doi.org/10.1186/s40064-015-1286-y

    Article  CAS  Google Scholar 

  • Kluskens L, van Alebeek G, Walther J, Voragen A, de Vos W, van der Oost J (2005) Characterization and mode of action of an exopolygalacturonase from the hyperthermophilic bacterium Thermotoga maritima. FEBS J 272(21):5464–5473. https://doi.org/10.1111/j.1742-4658.2005.04935.x

    Article  CAS  PubMed  Google Scholar 

  • Kohli P, Gupta R (2015) Alkaline pectinases: a review. Biocatal Agric Biotechnol 4(3):279–285. https://doi.org/10.1016/j.bcab.2015.07.001

    Article  Google Scholar 

  • Kumar B, Verma P (2020a) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crops Prod 154:112607. https://doi.org/10.1016/j.indcrop.2020.112607

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020b) Application of hydrolytic enzymes in biorefinery and its future prospects. In: Microbial strategies for techno-economic biofuel production. Springer, New York, pp 59–83

    Chapter  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lassmann T, Sonnhammer EL (2006) Kalign, Kalignvu and Mumsa: web servers for multiple sequence alignment. Nucleic Acids Res 34(web server issue):596–599

    Article  Google Scholar 

  • Li Z, Bai Z, Zhang B, Li B, Jin B, Zhang M, Lin F, Zhang H (2012) Purification and characterization of alkaline pectin lyase from a newly isolated Bacillus clausii and its application in elicitation of plant disease. Appl Biochem Biotechnol 167(8):2241–2256. https://doi.org/10.1007/s12010-012-9758-9

    Article  CAS  PubMed  Google Scholar 

  • Maldonado MC, Saad AM (1998) Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38

    Article  CAS  PubMed  Google Scholar 

  • Manachini P, Fortina M, Parini C (1987) Purification and properties of an endopolygalacturonase produced by Rhizopus stolonifer. Biotechnol Lett 9(3):219–224. https://doi.org/10.1007/bf01024570

    Article  CAS  Google Scholar 

  • Manachini P, Parini C, Fortina M (1988) Pectic enzymes from Aureobasidium pullulans LV 10. Enzyme Microb Technol 10(11):682–685. https://doi.org/10.1016/0141-0229(88)90060-

    Article  CAS  Google Scholar 

  • MarkoviÄ O, Slezárik A, Labudová I (1985) Purification and characterization of pectinesterase and polygalacturonase from Trichoderma reesei. FEMS Microbiol Lett 27(3):267–271. https://doi.org/10.1111/j.1574-6968.1985.tb00680.x

    Article  Google Scholar 

  • Mayans O, Scott M, Connerton I, Gravesen T, Benen J, Visser J, Pickersgill R, Jenkins J (1997) Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate binding clefts of pectin and pectate lyases. Structure 5:677–689

    Article  CAS  PubMed  Google Scholar 

  • McCarthy RE, Kotarski SF, Salyers AA (1985) Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J Bacteriol 161:493–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill PJ (1966) The pectic enzymes of Aspergillus niger. A mercury-activated exopolygalacturonase. Biochem J 99(3):557–561. https://doi.org/10.1042/bj0990557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki Y (1991) Purification and characterization of Endo-pectate lyase from Bacillus macerans. Agric Biol Chem 55(1):25–30. https://doi.org/10.1271/bbb1961.55.25

    Article  CAS  Google Scholar 

  • Moharib SA, El-Sayed ST, Jwanny EW (2000) Evaluation of enzymes produced from yeast. Nahrung 44:47–51

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Katsuragi T, Terashita T, Yoshikawa K, Sakai T (2000) Purification and characterization of an endo-polygalacturonase from Aspergillus awamori. Biosci Biotechnol Biochem 64(8):1729–1732. https://doi.org/10.1271/bbb.64.1729

    Article  CAS  PubMed  Google Scholar 

  • Palanivelu P (2006) Polygalacturonases: active site analysis and mechanism of action. Indian J Biotechnol 5:144–162

    Google Scholar 

  • Patill SR, Dayanand A (2006) Exploration of regional agrowastes for the production of pectinase by Aspergillus niger. Food Technol Biotechnol 44(2):289–292

    Google Scholar 

  • Phutela U, Dhuna V, Sandhu S, Chadha B (2005) Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposting orange peels. Braz J Microbiol 36(1). https://doi.org/10.1590/s1517-83822005000100013

  • Priya V, Sashi V (2014) Pectinase producing microorganisms. Int J Sci Res 4(3). ISSN 2250-3153

    Google Scholar 

  • Rastegari B, Karbalaei-Heidari H (2014) Isolation and partial characterization of a bacterial thermostable polymethyl galacturonase from a newly isolated Bacillus sp. strain BR1390. Iran J Biotechnol 12(4):41–46. https://doi.org/10.15171/ijb.1133

    Article  Google Scholar 

  • Rebello S, Anju M, Aneesh E, Sindhu R, Binod P, Pandey A (2017) Recent advancements in the production and application of microbial pectinases: an overview. Rev Environ Sci Biotechnol 16(3):381–394. https://doi.org/10.1007/s11157-017-9437-y

    Article  CAS  Google Scholar 

  • Reeves PJ, Douglas P, Salmond GP (1994) Beta-lactamase topology probe analysis of the Out O NmePhe peptidase, and six other Out protein components of the Erwinina carotovora general secretion pathway apparatus. Mol Microbiol 12:445–457

    Article  CAS  PubMed  Google Scholar 

  • Revilla I, Gonzalez-San Jose M (2003) Addition of pectolytic enzymes: an enological practice which improves the chromaticity and stability of red wines. Int J Food Sci Technol 38(1):29–36. https://doi.org/10.1046/j.1365-2621.2003.00628.x

    Article  CAS  Google Scholar 

  • Rexová-Benková L, Marković O (1976) Pectic enzymes. Adv Carbohydr Chem 33:323–385

    Google Scholar 

  • Russel M (1998) Macromolecular assembly and secretion across the bacterial cell envelope type II protein secretion systems. J Mol Biol 279:485–499

    Article  CAS  PubMed  Google Scholar 

  • Sabajanes MM, Yanez R, Alonso JL, Parajo JC (2012) Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. Int J Food Sci Technol 47(4):747–754

    Article  CAS  Google Scholar 

  • Sakai T (1992) Degradation of pectins. In: Winkelmann G (ed) Microbial degradation of natural products. VCH. ISBN: 3527283544, Weinheim, pp 57–81

    Google Scholar 

  • Sakiyama CCH, Paula EM, Pereira PC, Borges AC, Silva DO (2001) Characterization of pectin lyase produced by an endophytic strain isolated from coffee cherries. Lett Appl Microbiol 33:117–121

    Article  CAS  PubMed  Google Scholar 

  • Salazar L, Jayasinghe U (1999) Fundamentals of purification of plant viruses. In: Techniques in plant, virology, CIP. Training manual, JO, virus purification, International Potato Centre, Peru, 110.

    Google Scholar 

  • Salemi M, Vandamme A (2003) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge

    Google Scholar 

  • Schnitzhofer W, Weber H-J, VrÅ¡anská M, Biely P, Cavaco-Paulo A, Guebitz GM (2007) Purification and mechanistic characterisation of two polygalacturonases from Sclerotium rolfsii. Enzyme Microb Technol 40:1739–1747

    Article  CAS  Google Scholar 

  • Sharma D, Satyanarayana T (2012) Biotechnological potential of agro residues for economical production of thermoalkali-stable pectinase by Bacillus pumilus dcsr1 by solid-state fermentation and its efficacy in the treatment of ramie fibres. Enzyme Res 2012:1–7. https://doi.org/10.1155/2012/281384

    Article  CAS  Google Scholar 

  • Sharma N, Rathore M, Sharma M (2012) Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 12(1):45–60

    Article  Google Scholar 

  • Shin I, Dowmez S, Kilic O (1993) Study on pectolytic enzyme production from some agricultural wastes by fungi. Chem Microbiol Technol Lebensm 8:87–90

    Google Scholar 

  • Singh SA, AppuRao AG (1989) A simple fractionation protocol for and a comprehensive study of the molecular properties of two major endopolygalacturonases from Aspergillus niger. Biotechnol Appl Biochem 35:115–123

    Article  Google Scholar 

  • Singh SA, Plattnera H, Diekmann H (1999) Exopolygalacturonate lyase from a thermophulic Bacillus sp. Enzyme Microb Technol 25:420–425

    Article  CAS  Google Scholar 

  • Soriano M, Diaz P, Pastor FIJ (2005) Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr Microbiol 50:114–118

    Article  CAS  PubMed  Google Scholar 

  • Sun L, van Nocker S (2010) Analysis of promoter activity of members of the Pectate Lyase-LIKE (PLL) gene family in cell separation in Arabidopsis. BMC Plant Biol 10(1):152. https://doi.org/10.1186/1471-2229-10-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suneetha V, Khan ZA (2011) Screening, characterisation and optimization of microbial pectinase. In: Shukla G, Varma A (eds) Soil enzymology, vol 22: Soil biology. Springer, Berlin, pp 3–337

    Google Scholar 

  • Sutton MD, Peterson JBD (2001) Fermentation of sugarbeet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2. J Sugar Beet Res 38:1

    Article  Google Scholar 

  • Tanabe H, Kobayashi Y, Matuo Y, Nishi N, Wada F (1984) Isolation and fundamental properties of endo-Pectate Lyase pl-Isozymes from Erwinia carotovora†. Agric Biol Chem 48(8):2113–2120

    CAS  Google Scholar 

  • Takao M, Nakaniwa T, Yoshikawa K, Terashita T, Sakai T (2001) Molecular cloning, DNA sequence, and expression of the gene encoding for thermostable pectate lyase of thermophilic Bacillus sp. TS 47. Biosci Biotechnol Biochem 65:322–329

    Article  CAS  PubMed  Google Scholar 

  • Tapre AR, Jain RK (2014) Pectinases: Enzymes for fruit processing industry. Int Food Res J 21:447–453

    CAS  Google Scholar 

  • Truong LV, Tuyen H, Helmke E, Binh LT, Schweder T (2001) Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5:35–44

    Article  CAS  PubMed  Google Scholar 

  • Van Alebeek GJWM, Christensen TMIE, Schols HE, Mikkelsen JD, Voragen AGJ (2002) Mode of action of pectin lyase A of Aspergillus niger on differently C6-substituted oligogalacturonides. J Biol Chem 277(29):25929–25936

    Article  PubMed  Google Scholar 

  • Viikari L, Tenkanen M, Suurnakki A (2001) Biotechnology in the pulp and paper industry. In: Rehm HJ (ed) Biotechnology. Wiley, Hoboken, pp 523–546

    Google Scholar 

  • Vincken J, Schols H, Oomen R, McCann M, Ulvskov P, Voragen A, Visser R (2003) If homogalacturonan were a side chain of rhamnogalacturonan i. implications for cell wall architecture. Plant Physiol 132(4):1781–1789. https://doi.org/10.1104/pp.103.022350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser J, Bussink HJ, Witteveen C (2004) Gene expression in filamentous fungi. In: Smith A (ed) Gene expression in recombinant microorganisms. Marcel Dekker, New York, pp 241–308

    Google Scholar 

  • Voragen A, Coenen G, Verhoef R, Schols H (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20(2):263–275. https://doi.org/10.1007/s11224-009-9442-z

    Article  CAS  Google Scholar 

  • Whitaker J (1990) Microbial pectolytic enzymes. In: Microbial enzymes and biotechnology. Elsevier, London, pp 133–176. https://doi.org/10.1007/978-94-009-0765-2_4

    Chapter  Google Scholar 

  • Yadav S, Yadav P, Yadav D, Yadav K (2008) Purification and characterization of pectin lyase produced by Aspergillus terricola and its application in retting of natural fibers. Appl Biochem Biotechnol 159(1):270–283. https://doi.org/10.1007/s12010-008-8471-1

    Article  CAS  PubMed  Google Scholar 

  • Yadav P, Singh V, Yadav S, Yadav K, Yadav D (2009) In silico analysis of pectin lyase and pectinase sequences. Biochemistry (Moscow) 74(9):1049–1055. https://doi.org/10.1134/s0006297909090144

    Article  CAS  Google Scholar 

  • Yoder M, Jurnak F (1995) The refined three-dimensional structure of pectate lyase C from Erwinia chrysanthemi at 2.2 Angstrom resolution (implications for an enzymatic mechanism). Plant Physiol 107(2):349–364. https://doi.org/10.1104/pp.107.2.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Tian M, Du M, Fang T (2017) Enhancing the activity of pectinase using pulsed electric field (PEF) treatment. J Food Eng 205:56–63. https://doi.org/10.1016/j.jfoodeng.2017.02.023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Surajbhan Sevda thanks NIT Warangal for the Research Seed grant (P1128) for a support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajbhan Sevda .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare there is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, R., Sevda, S. (2022). Pectinases: Production, Harvest, Recovery, and Potential Industrial Application. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5214-1_10

Download citation

Publish with us

Policies and ethics