Skip to main content

Microbiome Interventions for the Prevention and Control of Disease Outbreaks in Shrimp Aquaculture

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management

Abstract

The extensive use of antimicrobial agents in shrimp aquaculture has led to the emergence of antimicrobial-resistant bacteria, which poses a huge threat to environmental and human health. Therefore, an eco-friendly and economic alternative treatment strategy has been devised these days, which involves the microbiome-based treatment. The role of gut microbiota in regulating the health, growth, and survival of aquaculture species has been a subject of interest in the research community. Researchers have found various biological agents such as probiotics, prebiotics, and synbiotics capable of manipulating microbiome to control diseases and improve survival of shrimp. Moreover, the use of biofloc technology and recirculating aquaculture systems aids in sustainable aquaculture. This chapter highlights the importance of microbiome-based and environment friendly treatment strategies for the prevention and control of disease outbreaks in shrimp aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Latif HM, Soliman AA, Sewilam H, Almeer R, Van Doan H, Alagawany M, Dawood MA (2020) The influence of raffinose on the growth performance, oxidative status, and immunity in Nile tilapia (Oreochromis niloticus). Aquacult Rep 18:100457

    Google Scholar 

  • Abdollahi-Arpanahi D, Soltani E, Jafaryan H, Soltani M, Naderi-Samani M, Campa-Córdova AI (2018) Efficacy of two commercial and indigenous probiotics, Bacillus subtilis and Bacillus licheniformis on growth performance, immuno-physiology and resistance response of juvenile white shrimp (Litopenaeus vannamei). Aquaculture 496(1):43–49

    CAS  Google Scholar 

  • Ahmad I, Rani AB, Verma AK, Maqsood M (2017) Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquac Int 25(3):1215–1226

    CAS  Google Scholar 

  • Ahmed N, Turchini GM (2021) Recirculating aquaculture systems (RAS): environmental solution and climate change adaptation. J Clean Prod 126604

    Google Scholar 

  • Aranguren LF, Han JE, Tang KF (2017) Enterocytozoon hepatopenaei (EHP) is a risk factor for acute hepatopancreatic necrosis disease (AHPND) and septic hepatopancreatic necrosis (SHPN) in the Pacific white shrimp Penaeus vannamei. Aquaculture 471:37–42

    Google Scholar 

  • Arias-Moscoso JL, Espinoza-Barrón LG, Miranda-Baeza A, Rivas-Vega ME, Nieves-Soto M (2018) Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zero water exchange. Aquaculture Reports 11:47–52

    Google Scholar 

  • Asche F, Anderson JL, Botta R, Kumar G, Abrahamsen EB, Nguyen LT, Valderrama D (2020) The economics of shrimp disease. J Invertebr Pathol 107397

    Google Scholar 

  • Avnimelech Y (1999 Jun 15) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176(3–4):227–235. https://doi.org/10.1016/S0044-8486(99)00085-X

    Article  CAS  Google Scholar 

  • Badiola M, Basurko OC, Piedrahita R, Hundley P, Mendiola D (2018) Energy use in recirculating aquaculture systems (RAS): a review. Aquac Eng 81:57–70

    Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1):1–22

    Google Scholar 

  • Boonanuntanasarn S, Wongsasak U, Pitaksong T, Chaijamrus S (2016) Effects of dietary supplementation with β‐glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquac Nutr 22(4):837–845

    CAS  Google Scholar 

  • Boyd CE, Clay JW (1998) Shrimp aquaculture and the environment. Sci Am 278(6):58–65

    Google Scholar 

  • Browdy CL, Moss SM (2005) Shrimp culture in urban, super-intensive closed systems. In: CostaPierce B, Desbonnet A, Edwards P, Baker D (eds) Urban Aquaculture. CABI, Oxfordshire, pp 173–186

    Google Scholar 

  • Butt RL, Volkoff H (2019) Gut microbiota and energy homeostasis in fish. Front Endocrinol 10:9

    Google Scholar 

  • Cai Y, Yuan W, Wang S, Guo W, Li A, Wu Y et al (2019) In vitro screening of putative probiotics and their dual beneficial effects: to white shrimp (Litopenaeus vannamei) postlarvae and to the rearing water. Aquaculture 498:61–71

    Google Scholar 

  • Chaivisuthangkura P, Longyant S, Sithigorngul P (2014) Immunological-based assays for specific detection of shrimp viruses. World J Virol 3(1):1

    PubMed  PubMed Central  Google Scholar 

  • Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(2):99–113

    Google Scholar 

  • Chen M, Chen XQ, Tian LX, Liu YJ, Niu J (2020) Beneficial impacts on growth, intestinal health, immune responses and ammonia resistance of pacific white shrimp (Litopenaeus vannamei) fed dietary synbiotic (mannan oligosaccharide and Bacillus licheniformis). Aquaculture Reports 17:100408

    Google Scholar 

  • Cock J, Salazar M, Rye M (2017) Strategies for managing diseases in non‐native shrimp populations. Rev Aquac 9(3):211–226

    Google Scholar 

  • Cornejo-Granados F, Lopez-Zavala AA, Gallardo-Becerra L, Mendoza-Vargas A, Sánchez F, Vichido R et al (2017) Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between wild, Aquacultured and AHPND/EMS outbreak conditions. Sci Rep 7(1):1–15

    CAS  Google Scholar 

  • Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture : beneficial effects and future challenges. Aquaculture 356:351–356

    Google Scholar 

  • De Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM (2018) Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol 94(1):161

    Google Scholar 

  • El‐Sayed AFM (2021) Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Rev Aquac 13(1):676–705

    Google Scholar 

  • Fan L, Wang Z, Chen M, Qu Y, Li J, Zhou A et al (2019) Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Sci Total Environ 657:1194–1204

    CAS  PubMed  Google Scholar 

  • FAO (2014) The State of World Fisheries and Aquaculture. Foodand Agriculture Organization of the United Nations, Rome. doi: 92–5–105177-1

    Google Scholar 

  • FAO (2020) Statistics – a quarterly update on world seafood markets. Globefish Highlights No. 1–2020. Rome

    Google Scholar 

  • Flegel TW (2006) Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258(1–4):1–33

    Google Scholar 

  • Flegel TW (2019) A future vision for disease control in shrimpaquaculture. J World Aquacult Soc 50:249–266

    Google Scholar 

  • Flegel TW, Lightner DV, Lo CF, Owens L (2008) Shrimp disease control: past, present and future. In: Bondad-Reantaso MG, Mohan CV, Crumlish M, Subasinghe RP. Dis Asian Aquacul VI. pp. 355

    Google Scholar 

  • Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88(S1):s39–s49

    CAS  PubMed  Google Scholar 

  • Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M et al (2017) Mapping the global potential for marine aquaculture. Nature Ecology & Evolution 1(9):1317–1324

    Google Scholar 

  • Govindaraju K, Itroutwar PD, Veeramani V, Kumar TA, Tamilselvan S (2019) Application of nanotechnology in diagnosis and disease management of white spot syndrome virus (WSSV) in aquaculture. J Clust Sci:1–9

    Google Scholar 

  • Hargreaves JA (2006 May 1) Photosynthetic suspended-growth systems in aquaculture. Aquac Eng 34(3):344–363. https://doi.org/10.1016/j.aquaeng.2005.08.009

    Article  Google Scholar 

  • Hernández-Rodríguez A, Alceste-Oliviero C, Sanchez R, Jory D, Vidal L, Constain-Franco LF (2001) Aquaculture development trends in Latin America and the Caribbean. In: Subasinghe R, Bueno PB, Phillips MJ, Hough C, McGladdery SE, Arthur JR (eds) Aquaculture in the third millenium, pp 317–340

    Google Scholar 

  • Hoseinifar SH, Sun YZ, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:2429

    PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Dai J, Qiu D (2021) Dysbiosis of the shrimp (Penaeus monodon) gut microbiome with AHPND outbreaks revealed by 16S rRNA metagenomics analysis. Aquac Res

    Google Scholar 

  • Huang Z, Zeng S, Xiong J, Hou D, Zhou R, Xing C et al (2020) Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8(1):1–13

    Google Scholar 

  • Huynh TG, Cheng AC, Chi CC, Chiu KH, Liu CH (2018) A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol 79:284–293

    CAS  PubMed  Google Scholar 

  • Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune network 14(6):277

    PubMed  PubMed Central  Google Scholar 

  • Kim S, Covington A, Pamer EG (2017) The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 279(1):90–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran GS, Priyadharshini S, Sajayan A, Ravindran A, Priyadharshini GB, Ramesh U et al (2020) Dietary administration of gelatinised polyhydroxybutyrate to Penaeus vannamei improved growth performance and enhanced immune response against Vibrio parahaemolyticus. Aquaculture 517:734773

    CAS  Google Scholar 

  • Kumar V, Roy S, Meena DK, Sarkar UK (2016) Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Reviews in Fisheries Science & Aquaculture 24(4):342–368

    Google Scholar 

  • Kumar V, Baruah K, Nguyen DV, Smagghe G, Vossen E, BossierP (2018) Phloroglucinol-mediated Hsp70 production in crus-taceans: protection against Vibrio parahaemolyticus in Arte-mia franciscana and Macrobrachium rosenbergii. Front Immunol 9:1–16

    Google Scholar 

  • Leung TLF, Bates AE (2013) More rapid and severe disease out-breaks for aquaculture at the tropics: implications for foodsecurity. J Appl Ecol 50:215–222

    Google Scholar 

  • Li Y, Liu H, Dai X, Li J, Ding F (2018a) Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 76:78–92

    CAS  PubMed  Google Scholar 

  • Li E, Xu C, Wang X, Wang S, Zhao Q, Zhang M et al (2018b) Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture 26(3):381–399

    Google Scholar 

  • Liu K, Han J, Li S, Liu L, Lin W, Luo J (2019) Insight into the diversity of antibiotic resistance genes in the intestinal bacteria of shrimp Penaeus vannamei by culture-dependent and independent approaches. Ecotoxicol Environ Saf 172:451–459

    CAS  PubMed  Google Scholar 

  • Lo CF, Aoki T, Bonami JR, Flegel T, Leu JH, Lightner DV Vlak JM (2011) Nimaviridae. In Virus taxonomy, IXth report of the international committee on taxonomy of viruses. Elsevier, pp. 292-234

    Google Scholar 

  • Luis-Villaseñor IE, Voltolina D, Audelo-Naranjo JM, Pacheco-Marges MR, Herrera-Espericueta VE, Romero-Beltrán E (2016) Effects of biofloc promotion on water quality, growth, biomass yield and heterotrophic community in Litopenaeus vannamei (Boone, 1931) experimental intensive culture. Ital J Anim Sci 14(3):3726

    Google Scholar 

  • Lukwambe B, Nicholaus R, Zhang D, Yang W, Zhu J, Zheng Z (2019) Successional changes of microalgae community in response to commercial probiotics in the intensive shrimp (Litopenaeus vannamei Boone) culture systems. Aquaculture 511:734257

    CAS  Google Scholar 

  • Mohan K, Ravichandran S, Muralisankar T, Uthayakumar V, Chandirasekar R, Seedevi P, Rajan DK (2019) Potential uses of fungal polysaccharides as immunostimulants in fish and shrimp aquaculture: a review. Aquaculture 500:250–263

    CAS  Google Scholar 

  • Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM III, Galindo-Villegas J (2015) Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol 6:512

    PubMed  PubMed Central  Google Scholar 

  • Muharrama ARW, Widanarni W, Alimuddin A, Yuhana M (2021) Gene expression and immune response of pacific white shrimp given bacillus NP5 probiotic and honey prebiotic and Vibrio parahaemolyticus infection. J Appl Aquacult 10:1–17

    Google Scholar 

  • Naiel MA, Farag MR, Gewida AG, Elnakeeb MA, Amer MS, Alagawany M (2021) Using lactic acid bacteria as an immunostimulants in cultured shrimp with special reference to lactobacillus spp. Aquac Int 29(1):219–231

    CAS  Google Scholar 

  • Nakajima T, Hudson MJ, Uchiyama J, Makibayashi K, Zhang J (2019) Common carp aquaculture in Neolithic China dates back 8,000 years. Nature Ecology & Evolution 3(10):1415–1418

    Google Scholar 

  • Nimrat S, Khaopong W, Sangsong J, Boonthai T, Vuthiphandchai V (2019) Dietary administration of bacillus and yeast probiotics improves the growth, survival, and microbial community of juvenile whiteleg shrimp, Litopenaeus vannamei. J Appl Aquacult. 8:1–17

    Google Scholar 

  • Ochoa-Solano JL, Olmos-Soto J (2006) The functional property of bacillus for shrimp feeds. Food Microbiol 23(6):519–525

    Google Scholar 

  • Patil PK, Geetha R, Ravisankar T, Avunje S, Solanki HG, Abraham TJ et al (2021) Economic loss due to diseases in Indian shrimp farming with special reference to Enterocytozoon hepatopenaei (EHP) and white spot syndrome virus (WSSV). Aquaculture 533:73623

    Google Scholar 

  • Prasad KP, Shyam KU, Banu H, Jeena K, Krishnan R (2017) Infectious myonecrosis virus (IMNV)–an alarming viral pathogen to penaeid shrimps. Aquaculture 477:99–105

    Google Scholar 

  • Prathiviraj R, Rajeev R, Fernandes H, Rathna K, Lipton AN, Selvin J, Kiran GS (2021) A gelatinized lipopeptide diet effectively modulates immune response, disease resistance and gut microbiome in Penaeus vannamei challenged with Vibrio parahaemolyticus. Fish Shellfish Immunol

    Google Scholar 

  • Pruden A, Pei RT, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol 40:7445–7450. https://doi.org/10.1021/es060413l.\

    Article  CAS  PubMed  Google Scholar 

  • Rajeev R, Adithya KK, Kiran GS, Selvin J (2021) Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Rev Aquac 13(1):238–258

    Google Scholar 

  • Ray AJ, Drury TH, Cecil A (2017) Comparing clear-water RAS and biofloc systems: shrimp (Litopenaeus vannamei) production, water quality, and biofloc nutritional contributions estimated using stable isotopes. Aquac Eng 77:9–14

    Google Scholar 

  • Ringø E (2020) Probiotics in shellfish aquaculture. Aquaculture and Fisheries 5(1):1–27

    Google Scholar 

  • Roy S, Bossier P, Norouzitallab P, Vanrompay D (2020) Trained immunity and perspectives for shrimp aquaculture. Rev Aquac 12(4):2351–2370

    Google Scholar 

  • Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, Karoonuthaisiri N (2013) Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8(4):e60802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichpaisal P, Karoonuthaisiri N (2014) Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 9(3):e91853

    PubMed  PubMed Central  Google Scholar 

  • Rungrassamee W, Arayamethakorn S, Karoonuthaisiri N, Chen SC, Chang E, Chan S, Ibuki M (2021) Molecular effects of mannanase-hydrolyzed coprameal to intestinal immunity in the Pacific white shrimp (Litopenaeus vannamei). bioRxiv

    Google Scholar 

  • Samocha TM, Schveitzer R, Krummenauer D, Morris TC (2012) Recent advances in super-intensive, zeroexchange shrimp raceway systems. Global Aquaculture Advocate 15(6):70–71

    Google Scholar 

  • Seethalakshmi PS, Rajeev R, Kiran GS, Selvin J (2021) Shrimp disease management for sustainable aquaculture: innovations from nanotechnology and biotechnology. Aquac Int:1–30

    Google Scholar 

  • Senapin S, Thaowbut Y, Gangnonngiw W, Chuchird N, Sriurairatana S, Flegel TW (2010) Impact of yellow head virus outbreaks in the whiteleg shrimp, Penaeus vannamei (Boone), in Thailand. J Fish Dis 33(5):421–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinn AP, Pratoomyot J, Griffiths D, Jiravanichpaisal J, Briggs M (2018) Asian shrimp production and the economic costs ofdisease. Asian Fisheries Science is a Journal 31S:29–58

    Google Scholar 

  • Sicuro B (2021) World aquaculture diversity: origins and perspectives. Reviews in Aquaculture

    Google Scholar 

  • Stickney R (2000) Aquaculture. Kirk‐Othmer Encyclopedia of Chemical Technology

    Google Scholar 

  • Su H, Hu X, Wang L, Xu W, Xu Y, Wen G et al (2020) Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms. J Environ Sci Health B 55(3):220–229

    CAS  PubMed  Google Scholar 

  • Suantika G, Situmorang ML, Kurniawan JB, Pratiwi SA, Aditiawati P, Astuti DI et al (2018) Development of a zero water discharge (ZWD)—recirculating aquaculture system (RAS) hybrid system for super intensive white shrimp (Litopenaeus vannamei) culture under low salinity conditions and its industrial trial in commercial shrimp urban farming in Gresik, East Java, Indonesia. Aquac Eng 82:12–24

    Google Scholar 

  • Subasinghe R, Soto D, Jia J (2009) Global aquaculture and its role in sustainable development. Rev Aquac 1(1):2–9

    Google Scholar 

  • Sun F, Wang Y, Wang C, Zhang L, Tu K, Zheng Z (2019) Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment. Aquaculture 507:196–202

    Google Scholar 

  • Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K et al (2020) The international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17(11):687–701

    PubMed  PubMed Central  Google Scholar 

  • Tang KF, Aranguren LF, Piamsomboon P, Han JE, Maskaykina IY, Schmidt MM (2017) Detection of the microsporidian Enterocytozoon hepatopenaei (EHP) and Taura syndrome virus in Penaeus vannamei cultured in Venezuela. Aquaculture 480:17–21

    CAS  Google Scholar 

  • Thornber K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR (2020) Evaluating antimicrobial resistance in the global shrimp industry. Rev Aquac 12(2):966–986

    PubMed  Google Scholar 

  • Timmons MB, Ebeling JM (2007) Recirculating aquaculture (2nd ed.), Cayuga aqua. Ventures, Ithaca, NY, 948 pp

    Google Scholar 

  • Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, Lightner DV (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Org 105(1):45–55

    Google Scholar 

  • Uddin SA, Kader MA (2006) The use of antibiotics in shrimp hatcheries in Bangladesh. J Fish Aquat Sci 1(1):64–67

    Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira FDN, Buglione Neto CC, Mouriño JLP, Jatobá A, Ramirez C, Martins ML et al (2008) Time-related action of Lactobacillus plantarum in the bacterial microbiota of shrimp digestive tract and its action as immunostimulant. Pesq Agrop Brasileira 43(6):763–769

    Google Scholar 

  • Wang CZ, Lin GR, Yan T, Zheng ZP, Chen B, Sun FL (2014) The cellular community in the intestine of the shrimp Penaeus penicillatus and its culture environments. Fish Sci 80(5):1001–1007

    CAS  Google Scholar 

  • Wang YB (2007) Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture 269(1–4):259–264

    CAS  Google Scholar 

  • Wang YC, Hu SY, Chiu CS, Liu CH (2019) Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish Shellfish Immunol 84:1050–1058

    CAS  PubMed  Google Scholar 

  • WHO (2014) Antimicrobial resistance: global report on surveillance. Australasian Med J 7:695–704

    Google Scholar 

  • Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7(2):e30440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q (2017) The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb Ecol 73(4):988–999

    PubMed  Google Scholar 

  • Xu W, Xu Y, Su H, Hu X, Yang K, Wen G, Cao Y (2020) Characteristics of ammonia removal and nitrifying microbial communities in a hybrid biofloc-RAS for intensive Litopenaeus vannamei culture: a pilot-scale study. Water 12(11):3000

    CAS  Google Scholar 

  • Zhang Q, Tan B, Mai K, Zhang W, Ma H, Ai Q et al (2011) Dietary administration of bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac Res 42(7):943–952

    CAS  Google Scholar 

  • Zhang Q, Liu Q, Liu S, Yang H, Liu S, Zhu L, Yang B, Jin J, Ding L, Wang X, Liang Y, Wang Q, Huang J (2014) A new nodavirus is associated with covert mortality disease of shrimp. J Gen Virol 95(Pt 12):2700–2709. https://doi.org/10.1099/vir.0.070078-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, He X, Austin B (2020) Vibrio harveyi: a serious pathogen of fish and invertebrates in mariculture. Mar Life Sci Technol 2:231–245. https://doi.org/10.1007/s42995-020-00037-z

    Article  Google Scholar 

  • Zhou L, Li H, Qin JG, Wang X, Chen L, Xu C, Li E (2020) Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at low salinity. Aquaculture 518:734847.68

    Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110:3435–3440. https://doi.org/10.1073/pnas.1222743110

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziaei-Nejad S, Rezaei MH, Takami GA, Lovett DL, Mirvaghefi AR, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252(2–4):516–524

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajeev, R., Seethalakshmi, P.S., Kiran, G.S., Selvin, J. (2021). Microbiome Interventions for the Prevention and Control of Disease Outbreaks in Shrimp Aquaculture. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_21

Download citation

Publish with us

Policies and ethics