Skip to main content

Comparison of Protein Interaction with Different Shaped PbS Nanoparticles and Corona Formation

  • Conference paper
  • First Online:
Selected Progresses in Modern Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 265))

  • 414 Accesses

Abstract

Different shaped PbS nanoparticles are synthesized at room temperature by using reagents, lead chloride (PbCl2), sulfur powder (S), and sodium borohydride (NaBH4), in the ethylenediamine medium. NaBH4 has acted as a reducing agent, whereas ethylenediamine is used as a capping agent. The grown PbS nanoparticles are spherical (7 nm size) for the reagent ratio of PbCl2, S, NaBH4 as 1:1:1. and grown PbS nanoparticles are cubical shape (13 nm size) for the reagent ratio of PbCl2, S, NaBH4 as 1:1:3. The grown PbS nanoparticles are characterized structurally and optically. The interaction and formation of the bio-conjugate of bovine serum albumin with PbS nanomaterials are studied for biomedical application. The interaction, complexion process, and conformational changes of bovine serum albumin with PbS nanomaterials are quantified by the photophysical and structural study. PbS nanomaterials enable the aggregation of bovine serum albumin by the way of unfolding. The interaction and the bioconjugate formation of albumin with PbS nanoparticles are investigated using optical spectroscopy, TEM. UV–VIS–NIR shows the binding process that occurred between albumin and PbS samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Khullar, J.V. Frangioni, M. Grinstaff, Y.L. Colson, Image-guided sentinel lymph node mapping and nanotechnology-based nodal treatment in lung cancer using invisible near-infrared fluorescence light. Thorac. Cardioid Surg. 21, 309–315 (2009)

    Google Scholar 

  2. S. Cohen, S. Margel, Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer. J. Nanobiotechnology 10, 36 (2012)

    Article  Google Scholar 

  3. R.K. Joshi, H.K. Sehgal, Density of states near Fermi level in PbS nanoparticle films. Phys. E. 23, 168–170 (2004)

    Article  Google Scholar 

  4. E. Hellstrand, I. Lynch, A. Andersson, T. Drakenberg, B. Dahlbäck, K.A. Dawson, S. Linse, T. Cedervall, Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276, 3372 (2009)

    Article  Google Scholar 

  5. S. Milani, F. Baldelli Bombelli, A. S. Pitek, K. A. Dawson, and J. Rädler, Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6, 2532 (2012).

    Google Scholar 

  6. E. Casals, T. Pfaller, A. Duschl, G.J. Oostingh, and V. Puntes, Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623 (2010).

    Google Scholar 

  7. J. Klein, Surface interactions with adsorbed macromolecules. J. Colloid Interface Sci. 111, 305–313 (1986)

    Article  ADS  Google Scholar 

  8. S.R. Saptarshi, A. Duschl, A.L. Lopata, Interaction of nanoparticles with proteins: relation to bio-reactisvity of the nanoparticle. J. Nanobiotechnol. 11, 26 (2013)

    Article  Google Scholar 

  9. T. Cedervall, I. Lynch, M. Foy, T. Berggård, S.C. Donnelly, G. Cagney, S. Linse, and K.A. Dawson, Effect of membrane charge density on the protein corona of cationic liposomes: interplay between cationic charge and surface area. Angew. Chem. Int.Ed. 119, 5856 (2007).

    Google Scholar 

  10. D. Dell’Orco, M. Lundqvist, C. Oslakovic, T. Cedervall, and S. Linse, Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS One. 5, e10949 (2010).

    Google Scholar 

  11. I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-Lago, S. Linse, and K.A. Dawson, The nanoparticle-protein complex as a biological entity; a complex fluid and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 167, 134 (2007).

    Google Scholar 

  12. I. Lynch, K.A. Dawson, Protein-nanoparticle interactions. Nano Today 3, 40 (2008)

    Article  Google Scholar 

  13. I. Lynch, K.A. Dawson, and S. Linse, Detecting cryptic epitopes created by nanoparticles. Sci. Signal 327, pe14 (2006).

    Google Scholar 

  14. F. Ding, S. Radic, R. Chen, P. Chen, N.K. Geitner, J.M. Brown, P.C. Ke, Direct observation of a single nanoparticle–ubiquitin corona formation. Nanoscale 5, 9162 (2013)

    Article  ADS  Google Scholar 

  15. H. Yin, R. Chen, P. Casey, P. Ke, T. Davis, C. Chen, Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 5, 73963 (2015)

    Article  ADS  Google Scholar 

  16. S. Dominguez-Medina, L. Kisley, L.J. Tauzin, A. Hoggard, B. Shuang, A.S.D.S. Indrasekara, S. Chen, L.Y. Wang, P.J. Derry, A. Liopo, Adsorption and unfolding of a single protein triggers nanoparticle aggregation. ACS Nano 10, 2103 (2016)

    Article  Google Scholar 

  17. C. Vidaurre-Agut, E. Rivero-Buceta, E. Romaní-Cubells, A.M. Clemments, C.D. Vera-, C.C. Landry, P. Botella, Protein corona over mesoporous silica nanoparticles: influence of the pore diameter on competitive adsorption and application to prostate cancer diagnostics. ACS Omega 4(5), 8852–8861 (2019)

    Article  Google Scholar 

  18. S. Dominguez-Medina, J. Blankenburg, J. Olson, C.F. Landes, S. Link, Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain. Chem. Eng. 1, 833 (2013)

    Article  Google Scholar 

  19. P. Wang, X. Wang, L. Wang, X. Hou, W. Liu, and C. Chen, In vitro biomechanical properties, fluorescence imaging, surface-enhanced Raman spectroscopy, and photothermal therapy evaluation of luminescent functionalized CaMoO4:Eu@Au hybrid nanorods on human lung adenocarcinoma epithelial cells. Sci. Technol. Adv. Mater. 16, 034610 (2016).

    Google Scholar 

  20. W. Liu, J. Rose, S. Plantevin, M. Auffan, J.Y. Bottero, C. Vidaud, Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona. Nanoscale 5, 1658 (2013)

    Article  ADS  Google Scholar 

  21. R. Huang, R.P. Carney, K. Ikuma, F. Stellacci, B.L. Lau, Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. ACS Nano 8, 5402 (2014)

    Article  Google Scholar 

  22. W. Zhou, Y. Cao, D. Sui, W. Guan, C. Lu, J. Xie, Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells. Nanoscale 8, 9614 (2016)

    Article  ADS  Google Scholar 

  23. A.K. Mishra, A.K. Bhunia, S. Saha, Lead sulfide quantum dot–serum albumin bioconjugate: spectroscopic, microscopic investigation and photo-conducting current analysis. Appl. Phys. A 127, 316 (2021)

    Article  ADS  Google Scholar 

  24. A.K. Mishra, S. Saha, Photocatalytic activity of methylene blue in the presence of PbS nanoparticles and its comparison with bulk PbS. Int. J. Metall. & Mater. Sci. Eng. 10(1), 13–20 (2020)

    Google Scholar 

  25. C. Louis-June, M.A. Andrade-Navarro, C. Perez-, Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Protein 80, 374 (2012)

    Article  Google Scholar 

  26. O.K. Abou-Zied, O.I. Al-, Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc. 130, 10793 (2008)

    Article  Google Scholar 

  27. T. Chakraborty, I. Chakraborty, S.P. Moulik, S. Ghosh, Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium. Langmuir 25, 3062 (2009)

    Article  Google Scholar 

  28. I.R. Krauss, F. Sica, C.A. Mattia, A. Merlino, Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium. Int. J. Mol. Sci. 13, 3782 (2012)

    Article  Google Scholar 

  29. M. Carbonaro, P. Maselli, P. Dore, A. Nucara, Pulse foods: Processing, quality and nutraceutical applications. Food Chem. 108, 361 (2008)

    Article  Google Scholar 

  30. A.K. Mishra, S. Saha, Comparison of ethanol gas sensors based on PbS nanoparticles and bulk PbS. Int. J. Electrochem. Sci. 15, 11594–11605 (2020)

    Article  Google Scholar 

  31. A.K. Mishra, S. Saha, Growth and characterization of PbS nanoparticles using THF. J. Phys. Sci. 23, 223–229 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the DST-FIST-sponsored Department of Physics, Vidyasagar University, for providing various instrumental facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, A.K., Bhunia, A.K., Saha, S. (2021). Comparison of Protein Interaction with Different Shaped PbS Nanoparticles and Corona Formation. In: Sengupta, S., Dey, S., Das, S., Saikia, D.J., Panda, S., Podila, R. (eds) Selected Progresses in Modern Physics. Springer Proceedings in Physics, vol 265. Springer, Singapore. https://doi.org/10.1007/978-981-16-5141-0_6

Download citation

Publish with us

Policies and ethics