Skip to main content

Future Therapies for Diabetes

  • Chapter
  • First Online:
Stroke Revisited: Diabetes in Stroke

Part of the book series: Stroke Revisited ((STROREV))

  • 554 Accesses

Abstract

Diabetes is one of the most prevalent diseases and the most prevalent metabolic disorder. Pancreatic islet transplantation is a promising treatment for diabetes that aims to replace lost pancreatic beta cells. However, donor shortage is a problem. As an alternative to pancreatic islets derived from human donors, one option would be artificial functional pancreatic islet cells (bioartificial pancreatic islets). One such system, created using human pluripotent stem cells (hPSCs), would confer pancreatic beta cells with the ability to secrete insulin according to blood glucose level. However, the most suitable method for creating this system has not yet been established. The effect of the current transplant protocol is insufficient, and a greater functional improvement is required from pancreatic beta cells derived from hPSCs. On the other hand, pancreatic progenitor cells derived from hPSCs can mature into glucose-responsive beta cells after the transplant in vivo and transplantation methods are available. In addition, gene therapy studies are also being conducted. Other promising therapies include xenotransplantation of porcine pancreatic islets. In this review, I describe their advantages and problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12:817–26.

    Article  CAS  PubMed  Google Scholar 

  2. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–6.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther. 2017;8:240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang Y, Chang Y. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. Prog Mol Biol Transl Sci. 2014;121:321–49.

    Article  CAS  PubMed  Google Scholar 

  5. Efrat S. Ex-vivo expansion of adult human pancreatic beta-cells. Rev Diabet Stud. 2008;5:116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kayali AG, Flores LE, Lopez AD, Kutlu B, Baetge E, Kitamura R, Hao E, Beattie GM, Hayek A. Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes. 2007;56:703–8.

    Article  CAS  PubMed  Google Scholar 

  7. Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev Rep. 2014;10:327–37.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic beta cells: lessons from embryogenesis. Biol Rev Camb Philos Soc. 2018;93:364–89.

    Article  PubMed  Google Scholar 

  10. Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol. 1995;7:862–9.

    Article  CAS  PubMed  Google Scholar 

  11. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone—expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.

    Article  PubMed  CAS  Google Scholar 

  12. Memon B, Karam M, Al-Khawaga S, Abdelalim EM. Enhanced differentiation of human pluripotent stem cells into pancreatic progenitors co-expressing PDX1 and NKX6.1. Stem Cell Res Ther. 2018;9:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li ML, Nguyen VQ, Giacometti S, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived cells. Nat Cell Biol. 2019;21:263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32:1121–33.

    Article  CAS  PubMed  Google Scholar 

  15. Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol. 2020;38:460–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ, Kieffer TJ. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 2013;31:2432–42.

    Article  CAS  PubMed  Google Scholar 

  17. Bocian-Sobkowska J, Zabel M, Wozniak W, Surdyk-Zasada J. Polyhormonal aspect of the endocrine cells of the human fetal pancreas. Histochem Cell Biol. 1999;112:147–53.

    Article  CAS  PubMed  Google Scholar 

  18. Cogger KF, Sinha A, Sarangi F, McGaugh EC, Saunders D, Dorrell C, Mejia-Guerrero S, Aghazadeh Y, Rourke JL, Screaton RA, et al. Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun. 2017;8:331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H. CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells. 2011;29:609–17.

    Article  CAS  PubMed  Google Scholar 

  20. Sugiyama T, Rodriguez RT, McLean GW, Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A. 2007;104:175–80.

    Article  CAS  PubMed  Google Scholar 

  21. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH, Harb G, Poh YC, Sintov E, Gürtler M, Pagliuca FW, et al. Charting cellular identity during human in vitro-cell differentiation. Nature. 2019;569:368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia. 2005;48:49–57.

    Article  CAS  PubMed  Google Scholar 

  23. Shimoda M, Chen S, Noguchi H, Takita M, Sugimoto K, Itoh T, Chujo D, Iwahashi S, Naziruddin B, Levy MF, Matsumoto S, Grayburn PA. A new method for generating insulin-secreting cells from human pancreatic epithelial cells after islet isolation transformed by NeuroD1. Hum Gene Ther Method. 2014 Jun;25(3):206–19.

    Article  CAS  Google Scholar 

  24. Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell. 2015;17:204–12.

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 2015;17:195–203.

    Article  CAS  PubMed  Google Scholar 

  26. Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med. 2020;52:213–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlsson P-O, Schwarcz E, Korsgren O, Blanc KL. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015;64:587–92.

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi H, Sakata N, Yoshimatsu G, Hasegawa S, Kodama S. Regenerative and transplantation medicine: cellular therapy using adipose tissue-derived mesenchymal stromal cells for type 1 diabetes mellitus. J Clin Med. 2019;8(2):249.

    Article  CAS  PubMed Central  Google Scholar 

  29. Dmitrieva RI, Minullina IR, Bilibina AA, Tarasova OV, Anisimov SV, Zaritskey AY. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle. 2012;11:377–83.

    Article  CAS  PubMed  Google Scholar 

  30. Gromada J, Brock B, Schmitz O, Rorsman P. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol. 2004;95:252–62.

    Article  CAS  PubMed  Google Scholar 

  31. Opara EC, Mirmalek-Sani SH, Khanna O, Moya ML, Brey EM. Design of a bioartificial pancreas(+). J Investig Med. 2010;58:831–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vegas AJ, Veiseh O, Dolo JC, Ma M, Tam HH, Bratlie K, Li J, Bader AR, Langan E, Olejnik K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonini C, Bondanza A, Perna SK, Kaneko S, Traversari C, Ciceri F, Bordignon C. The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther. 2007;15:1248–52.

    Article  CAS  PubMed  Google Scholar 

  34. Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonself. 2010;1:165e75.

    Google Scholar 

  35. Ahmad Z, Rasouli M, Azman AZF, Omar AR. Evaluation of insulin expression and secretion in genetically engineered gut K and L-cells. BMC Biotechnol. 2012;12:1e9.

    Article  CAS  Google Scholar 

  36. Jaén ML, Vilà L, Elias I, Jimenez V, Rodó J, Maggioni L, et al. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol Ther Methods Clin Dev. 2017;6:1e7.

    Article  CAS  Google Scholar 

  37. Romer AI, Sussel L. Pancreatic islet cell development and regeneration. Curr Opin Endocrinol Diabetes Obes. 2015;22:255e64.

    Article  CAS  Google Scholar 

  38. Li H, Li X, Lam KSL, Tam S, Xiao W, Xu R. Adeno-associated virus-mediated pancreatic and duodenal homeobox gene-1 expression enhanced differentiation of hepatic oval stem cells to insulin-producing cells in diabetic rats. J Biomed Sci. 2008;15:487e97.

    Google Scholar 

  39. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development. 2000;127:3533e42.

    Article  Google Scholar 

  40. Abed A, Critchlow C, Flatt PR, McClenaghan NH, Kelly C. Directed differentiation of progenitor cells towards an islet-cell phenotype. Am J Stem Cells. 2012;1:196e204.

    Google Scholar 

  41. Zhao M, Amiel SA, Ajami S, Jiang J, Rela M, Heaton N, et al. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One. 2008;3:1e9.

    Google Scholar 

  42. Dassaye R, Naidoo S, Cerf ME. Transcription factor regulation of pancreatic organogenesis, differentiation and maturation. Islets. 2016;8:13e34.

    Article  CAS  Google Scholar 

  43. Yoon JW, Jun HS. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002;8:62e8.

    Article  Google Scholar 

  44. Chen NKF, Wong JS, Kee IHC, Lai SH, Thng CH, Ng WH, et al. Nonvirally modified autologous primary hepatocytes correct diabetes and prevent target organ injury in a large preclinical model. PLoS One. 2008;3:1e13.

    Google Scholar 

  45. Groth CG, Korsgren O, Tibell A, et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet. 1994;344:1402–4.

    Article  CAS  PubMed  Google Scholar 

  46. Valdes-Gonzalez RA, Dornates LM, Garibay GN, et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol. 2005;153:419–27.

    Article  CAS  PubMed  Google Scholar 

  47. Elliott RB, Escobar L, Tan PL, et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14:157–61.

    Article  PubMed  Google Scholar 

  48. Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation. 2014;21:309–23.

    Article  PubMed  Google Scholar 

  49. Matsumoto S, Abalovich A, Wechsler C, Wynyard S, Elliott RB. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine. 2016;12:255–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Morozov VA, Wynyard S, Matsumoto S, Abalovich A, Denner J, Elliott R. No PERV transmission during a clinical trial of pig islet cell transplantation. Virus Res. 2017;227:34–40.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Lei T, Wei L, Du S, Girani L, Deng S. Xenotransplantation in China: present status. Xenotransplantation. 2019;26:e12490.

    PubMed  Google Scholar 

  52. Matsumoto S, Tomiya M, Sawamoto O. Current status and future of clinical islet xenotransplantation. J Diabetes. 2016;8:483–93.

    Article  PubMed  Google Scholar 

  53. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matsunari H, Watanabe M, Hasegawa K, et al. Compensation of disabled organogenesis in genetically modified pig fetuses by blastocyst complementation. Stem Cell Reports. 2020;14:21–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Shimoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, M. (2021). Future Therapies for Diabetes. In: Lee, SH., Kang, DW. (eds) Stroke Revisited: Diabetes in Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-16-5123-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5123-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5122-9

  • Online ISBN: 978-981-16-5123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics