Skip to main content

Interplay of Stresses, Interfaces, and Nanoscale Effects: TEM Investigations

  • Chapter
  • First Online:
Electron Microscopy in Science and Engineering

Part of the book series: IITK Directions ((IITKD,volume 6))

  • 740 Accesses

Abstract

The proximity of interfaces and under-coordination therein plays a key role in the behavior of nanoscale systems. The stress state associated with defects is altered in small domains and further, configurational effects gain prominence. Interesting aspects come to the fore via the interplay of stresses, interfaces, and geometry. Diverse phenomena which elucidate this interconnectedness include the stabilization of the coherent state (precipitate), surface stress-driven lattice expansion in hollow shells and the alteration of the critical size for nucleation. Interesting outcomes of the study include 'depth sensitive lattice fringe imaging,’ 'liquid-like nucleation in nanoscale films' and 'Poisson effect-driven anomalous lattice expansion in metal nanoshells.’ The synergistic role of transmission electron microscopy and computational models in providing insights into these nanoscale phenomena is highlighted in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albisetti AF, Biffi C, Tuissi A (2012) Synthesis and structural analysis of Cu10Zr7. J Alloys Compd 544:42

    Google Scholar 

  • Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomed J 7:145

    Article  Google Scholar 

  • Kumar A, Kavitha KG, Subramaniam A (2012) Interfacial edge dislocation Interactions with free-surfaces in nanocrystals. J Nanosci Nanotechnol 11:1

    Google Scholar 

  • Baser TA, Baricco M (2008) Glass forming ability of (Cu50Zr50)96M4 (M=None, Al, Nb) bulk metallic glasses. Rev Adv Mater Sci 18:71

    Google Scholar 

  • Bhattacharyya S, Subramaniam A, Koch CT, Ruhle M (2006) Aspects regarding measurement of thickness of Intergranular glassy films. J Microsc 221:46

    Google Scholar 

  • Bollmann W (1970) Crystal Defects and Crystalline Interfaces. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Brown LM, Woolhouse GR, Valdrè U (1968) Radiation-induced Coherency Loss in a Cu-Co Alloy. Philos Mag 17:781

    Article  Google Scholar 

  • David A (2009) Porter. Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, Kenneth E. Esterling and Mohamed Y. Sharif

    Google Scholar 

  • Eshelby JD (1953) Screw dislocations in thin rods. J Appl Phys 24:176

    Article  Google Scholar 

  • Gupta A, Shervani S, Amaladasse F, Sivakumar S, Balani K, Subramaniam A (2019) Enhanced reversible hydrogen storage in Nickel Nano hollow spheres. Int J Hydrog Energy 44:22032

    Article  Google Scholar 

  • Hirth JP, Lothe J (1968) Theory of Dislocations. McGraw-Hill, New York

    MATH  Google Scholar 

  • Iyer G, De D, Kumar A, Pala R, Subramaniam A (2016) two scale simulation of surface stress in solids and its effects. Appl Surf Sci 371:343

    Article  Google Scholar 

  • Iyer G, Shervani S, Mishra G, De D, Kumar A, Sivakumar S, Balani K, Pala R, Subramaniam A (2017) Poisson effect driven anomalous lattice expansion in metal nanoshells. Appl Phys Lett 110:131603

    Google Scholar 

  • Jesser WA (1969) On the theory of loss of coherency by spherical precipitates. Philos Mag 19:993

    Article  Google Scholar 

  • Suresh K, Radhakrishnan TK, Kalaichelvi P (2016) A review of classical and nonclassical nucleation theories. Cryst Growth Des 16:6663

    Google Scholar 

  • Khanikar P, Subramaniam A (2010) Critical size for edge dislocation free free-standing nanocrystals by finite element method. J Nano Res 10:93

    Article  Google Scholar 

  • Kumar A, Subramaniam A (2011) Materials analogue of zero stiffness structures. Philos Mag Lett 91:272

    Article  Google Scholar 

  • Kumar A, Subramaniam A (2012a) Stable edge dislocations in finite crystals. Philos Mag 92:2947

    Article  Google Scholar 

  • Kumar A, Subramaniam A (2012b) Finite substrate effects on critical thickness in epitaxial systems. J Adv Mater Res 585:39

    Article  Google Scholar 

  • Kumar A, Subramaniam A (2013a) Negative, zero and positive stiffness in extended Eshelby plates. Philos Mag Lett 93:703

    Article  Google Scholar 

  • Kumar A, Subramaniam A (2013b) Position dependant critical thickness in finite epitaxial systems. Appl Surf Sci 275:60

    Article  Google Scholar 

  • Kumar A, Kaur G, Subramaniam A (2013a) Critical sizes for coherent to semicoherent transformation in precipitates. Int J Mater Res 104:1171

    Article  Google Scholar 

  • Kumar A, Gautam M, Subramaniam A (2013b) On the Formation and Stability of Two Misfit Dislocations in the Cu-γFe System. J Mech Mater Struct 7:135

    Google Scholar 

  • Kumar A, Gautam M, Subramaniam A (2014) Critical sizes for the stabilization of coherent precipitates. J Appl Phys 115:193509

    Google Scholar 

  • Malis T, Cheng SC, Egerton RF (1988) EELS log-ratio technique for specimen thickness measurement in the TEM. J Electron Microsc Tech 8:193

    Article  Google Scholar 

  • Matthews JW (1979) In: FRN Nabarro (eds.), Dislocations in Solids. North-Holland Publishing Company, New York

    Google Scholar 

  • Nabarro FRN (1967) Theory of crystal dislocations. Clarendon Press, Oxford, p 75

    Google Scholar 

  • Nalwa, Singh H, Ed (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Los Angeles, p 10

    Google Scholar 

  • Rani P, Raghavendra RM, Subramaniam A (2020) On the variability of critical size for homogeneous nucleation in a solid-state diffusional transformation. arXiv:2007.02112

  • Raghavendra RM, Ganesh Iyer D, Kumar A, Subramaniam A (2018) Surface stress mediated image force and torque on an edge dislocation. Philos Mag 98:1731

    Google Scholar 

  • Rani P, Kumar A, Vishwanadh B, Bhattacharyya S, Tewari R, Subramaniam A (2015) Stabilization of coherent precipitates in nanoscale thin films. Philos Mag 95:4130

    Google Scholar 

  • Rani P, Kumar A, Vishwanadh B, Ali K, Arya A, Tewari R, Subramaniam A (2017) Liquid like nucleation in free-standing nanoscale films. Nanoscale (Communication) 9:12283

    Google Scholar 

  • Schodek D, Ferreira P, Ashby M (2009) Nanomaterials, nanotechnologies and design: an introduction to engineers and architects. Butterworth-Heinemann

    Google Scholar 

  • Shervani S, Mukherjee P, Gupta A, Mishra G, Illath K, Ajithkumar TG, Sivakumar S, Sen P, Balani K, Subramaniam A (2017) Multi-mode Hydrogen Storage in Nanocontainers. Int J Hydrog Energy 42:24256

    Google Scholar 

  • Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc A 63:444

    Article  Google Scholar 

  • Subramaniam A (2004) Critical thickness of equilibrium epitaxial thin films using finite element method. J Appl Phys 95:8472

    Google Scholar 

  • Subramaniam A, Shervani S, Gupta A, Balani K (2020) Gases in nanocontainers, smart nanocontainers: micro and nano technologies. Elsevier p 499

    Google Scholar 

  • Subramaniam A, Balani K, http://home.iitk.ac.in/~anandh/E-book.htm.

  • Subramaniam A, Ramakrishnan N (2003) Analysis of thin film growth using finite element method. Surf Coat Tech 167:249

    Google Scholar 

  • Subramaniam A, Kumar A (2014) Edge dislocations in finite crystals: special effects and strange phenomena. Mech Solids Directions 14:88

    Google Scholar 

  • Watanabe D, Watanabe C, Monzen R (2008) Effect of coherency on coarsening of second-phase precipitates in Cu-base alloys. J Mater Sci 43:3946

    Article  Google Scholar 

  • Woolhouse GR, Ipohorski M (1971) On the interaction between radiation damage and coherent precipitates. Proc R Soc A 324:415

    Google Scholar 

  • Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H et al (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat Nanotechnol 9:618

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of group members: Dr. Suboohi Sherwani and Dr. Pooja Rani for their contributions to the work, on which this article is based. Further we would like to acknowledge our collaborators and co-authors: Prof. Raj Pala, Dr. Raghvendra Tiwari, Dr. B. Vishwanadh, Prof. Somnath Bhattacharyya, Prof. Sri Sivakumar, Dr Gargi Mishra, Mr. Deb De, Prof. Kantesh Balani, Dr. Kawsar Ali, and Dr. Ashok Arya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandh Subramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramaniam, A., Raghavendra, R.M., Iyer, G., Kumar, A. (2022). Interplay of Stresses, Interfaces, and Nanoscale Effects: TEM Investigations. In: Biswas, K., Sivakumar, S., Gurao, N. (eds) Electron Microscopy in Science and Engineering. IITK Directions, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-16-5101-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5101-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5100-7

  • Online ISBN: 978-981-16-5101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics