Skip to main content

FPGA Implementation of ECC Enabled Multi-factor Authentication (E-MFA) Protocol for IoT Based Applications

  • Conference paper
  • First Online:
Microelectronic Devices, Circuits and Systems (ICMDCS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1392))

Abstract

IoT platform creates attractive opportunities for our daily lives which make us smarter and more comfortable. IoT offers an incredible guarantee in the e-healthcare field by enhancing the quality of service with limited time-bound. The connectivity provided for e-healthcare devices poses overwhelming security and privacy concerns in this area. In this work, the Elliptic Curve Cryptography (ECC) based Multi-Factor Authentication (MFA) is employed between two entities to enhance security. The authentication is achieved using the Point multiplication operation, which provides more randomness. The three-factor authentication protocol for IoT based E-health devices is presented in this work. The architecture is coded using Verilog HDL, synthesized using Xilinx Synthesis Technology (XST) and ported in Zynq FPGA device (XC7Z020CLG484–1). The results show that the proposed three-factor mutual authentication protocol provides better security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, D., Liu, Z., Yong, Z., Zou, X., Cheng, J.: Design and implementation of an ECC-based digital baseband controller for RFID tag chip. IEEE Trans. Ind. Electron. 62, 4365–4373 (2015). https://doi.org/10.1109/TIE.2014.2387333

    Article  Google Scholar 

  2. Liu, Z., Liu, D., Li, L., Lin, H., Yong, Z.: Implementation of a new RFID authentication protocol for EPC Gen2 standard. IEEE Sens. J. 15, 1003–1011 (2015). https://doi.org/10.1109/JSEN.2014.2359796

    Article  Google Scholar 

  3. Hatzivasilis, G., Floros, G., Papaefstathiou, I., Manifavas, C.: Lightweight authenticated encryption for embedded on-chip systems. Inf. Secur. J. 25, 151–161 (2016). https://doi.org/10.1080/19393555.2016.1209259

    Article  Google Scholar 

  4. Li, N., Liu, D., Nepal, S.: Lightweight mutual authentication for IoT and its applications. IEEE Trans. Sustain. Comput. 2, 359–370 (2017). https://doi.org/10.1109/tsusc.2017.2716953

    Article  Google Scholar 

  5. Mujahid, U., Najam-Ul-Islam, M., Khalid, M.: Efficient hardware implementation of KMAP+: an ultralightweight mutual authentication protocol. J. Circuits, Syst. Comput. 27, 1850033 (2018). https://doi.org/10.1142/S0218126618500330

  6. Vijaykumar, V.R., Sekar, S.R., Elango, S., Ramakrishnan, S.: Implementation of 2n–2k-1 modulo adder based RFID mutual authentication protocol. IEEE Trans. Ind. Electron. 65, 626–635 (2018). https://doi.org/10.1109/TIE.2017.2711864

    Article  Google Scholar 

  7. Sureshkumar, V., Amin, R., Vijaykumar, V.R., Sekar, S.R.: Robust secure communication protocol for smart healthcare system with FPGA implementation. Futur. Gener. Comput. Syst. 100, 938–951 (2019). https://doi.org/10.1016/j.future.2019.05.058

    Article  Google Scholar 

  8. Aghili, S.F., Mala, H., Shojafar, M., Peris-Lopez, P.: LACO: lightweight three-factor authentication, access control and ownership transfer scheme for e-health systems in IoT. Futur. Gener. Comput. Syst. 96, 410–424 (2019). https://doi.org/10.1016/j.future.2019.02.020

    Article  Google Scholar 

  9. Dong, Q., Chen, M., Li, L., Fan, K.: Cloud-based radio frequency identification authentication protocol with location privacy protection. Int. J. Distrib. Sens. Netw. 14 (2018). https://doi.org/10.1177/1550147718754969

  10. Gope, P., Amin, R., Hafizul Islam, S.K., Kumar, N., Bhalla, V.K.: Lightweight and privacy-preserving RFID authentication scheme for distributed IoT infrastructure with secure localization services for smart city environment. Futur. Gener. Comput. Syst. 83, 629–637 (2018). https://doi.org/10.1016/j.future.2017.06.023

    Article  Google Scholar 

  11. Zhang, L., Zhang, Y., Tang, S., Luo, H.: Privacy protection for e-health systems by means of dynamic authentication and three-factor key agreement. IEEE Trans. Ind. Electron. 65, 2795–2805 (2018). https://doi.org/10.1109/TIE.2017.2739683

    Article  Google Scholar 

  12. Arshad, H., Nikooghadam, M.: An efficient and secure authentication and key agreement scheme for session initiation protocol using ECC. Multimedia Tools Appl. 75(1), 181–197 (2014). https://doi.org/10.1007/s11042-014-2282-x

    Article  Google Scholar 

  13. Guo, D., Wen, Q., Li, W., Zhang, H., Jin, Z.: An improved biometrics-based authentication scheme for telecare medical information systems. J. Med. Syst. 39(3), 1 (2015). https://doi.org/10.1007/s10916-015-0194-6

    Article  Google Scholar 

  14. Srivastava, K., Awasthi, A.K., Kaul, S.D., Mittal, R.C.: A hash based mutual RFID tag authentication protocol in telecare medicine information system. J. Med. Syst. 39(1), 1–5 (2014). https://doi.org/10.1007/s10916-014-0153-7

    Article  Google Scholar 

  15. Suhardi, Ramadhan, A.: A survey of security aspects for internet of things in healthcare. In: Lecture Notes in Electrical Engineering. pp. 1237–1247. Springer (2016). https://doi.org/10.1007/978-981-10-0557-2_117

  16. He, D., Zeadally, S.: An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve cryptography. IEEE Internet Things J. 2, 72–83 (2015). https://doi.org/10.1109/JIOT.2014.2360121

    Article  Google Scholar 

  17. Schinianakis, D.M., Fournaris, A.P., Michail, H.E., Kakarountas, A.P., Stouraitis, T.: An RNS implementation of an Fp elliptic curve point multiplier. IEEE Trans. Circuits Syst. I Regul. Pap. 56, 1202–1213 (2009). https://doi.org/10.1109/TCSI.2008.2008507

  18. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. (2004). https://doi.org/10.1007/b97644

  19. . Washington, L.: Elliptic Curves: Number Theory and Cryptography (2004).https://doi.org/10.5860/choice.41-4097

  20. Vijaykumar, V.R., Reghunath, R., Rajasekar, S., Elango, S.: A novel lightweight and low power tag-reader mutual authentication protocol for portable RFID based security systems. In: IEACon 2016 - 2016 IEEE Industrial Electronics and Applications Conference (2017). https://doi.org/10.1109/IEACON.2016.8067405

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Elango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sekar, S.R., Elango, S., Philip, S.P., Raj, A.D. (2021). FPGA Implementation of ECC Enabled Multi-factor Authentication (E-MFA) Protocol for IoT Based Applications. In: Arunachalam, V., Sivasankaran, K. (eds) Microelectronic Devices, Circuits and Systems. ICMDCS 2021. Communications in Computer and Information Science, vol 1392. Springer, Singapore. https://doi.org/10.1007/978-981-16-5048-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5048-2_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5047-5

  • Online ISBN: 978-981-16-5048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics