Skip to main content

Infectious Lesions in Bones and Joints

  • Chapter
  • First Online:
Radiology of Infectious and Inflammatory Diseases - Volume 5

Abstract

Bone is the movement tissue of human body. It originates from the mesenchyme in the embryonic period and differentiates from the mesenchyme around the notochord at about the eighth week of embryo. It first forms membranous bone, then develops into cartilage, and then gradually ossifies. Some osseous tissues are also directly derived from membranous bone. From outside to inside are periosteum, bony substance, and internal bone marrow, the distribution of blood vessels and nerves can be found in all of them [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renju B, Xuelin Z. Medical imaging diagnostics. 3rd ed. Beijing: People’s Health Publishing House; 2010.

    Google Scholar 

  2. Shuling B, Dajun Y. Systematic anatomy. 9th ed. Beijing: People’s Medical Publishing House; 2018.

    Google Scholar 

  3. Guo Q. Applied radiology. 3rd ed. Beijing: The People’s Medical Publishing House; 2007.

    Google Scholar 

  4. Pugmire BS, Shailam R, Gee MS. Role of MRI in the diagnosis and treatment of osteomyelitis in pediatric patients. World J Radiol. 2014;6(8):530–7.

    PubMed  PubMed Central  Google Scholar 

  5. Hui Q, Wu W, Rongjie B. Orthopedic imaging: a practical approach. 5th ed. Beijing: Science Press; 2012.

    Google Scholar 

  6. Lattar SM, Tuchscherr LP, Centron D, et al. Molecular fingerprinting of Staphylococcus aureus isolated from patients with osteomyelitis in Argentina and clonal distribution of the cap5(8)genes and of other selected virulence genes. Eur J Clin Microbiol Infect Dis. 2012;31(10):2559–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mc Carthy AJ, Lindsay JA. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol. 2010;10(173):2–15.

    Google Scholar 

  8. Nelson GE, Pondo T, Toews KA, et al. Epidemiology of invasive group A streptococcal infections in the United States, 2005-2012. Clin Infect Dis. 2016;63(4):478–86.

    PubMed  Google Scholar 

  9. Adetunji SA, Ramirez G, Foster MJ, et al. A systematic review and meta-analysis of the prevalence of osteoarticular brucellosis. PLoS Negl Trop Dis. 2019;13(1):e0007112.

    PubMed  PubMed Central  Google Scholar 

  10. Zheng R, Xie S, Lu X, et al. A systematic review and meta-analysis of epidemiology and clinical manifestations of human brucellosis in China. Biomed Res Int. 2018;2018:5712920.

    PubMed  PubMed Central  Google Scholar 

  11. Rando MM, De Matteis G, Gessi M, et al. Tuberculous arthritis of the ankle. Eur J Case Rep Intern Med. 2018;5(6):000870.

    PubMed  PubMed Central  Google Scholar 

  12. Vanhoenacker F, Sanghvi D, De Backer A. Imaging features of extraaxial musculoskeletal tuberculosis. Indian J Radiol Imaging. 2009;19(3):176–86.

    PubMed  PubMed Central  Google Scholar 

  13. Babitha F, Priya PV, Poothiode U. Hydatid cyst of bone. Indian J Med Microbiol. 2015;33(3):442–4.

    CAS  PubMed  Google Scholar 

  14. Nouroallahian M, Bakhshaee M, Afzalzadeh MR, et al. A hydatid cyst in an unusual location-the infratemporal fossa. Laryngoscope. 2013;123(2):407–9.

    PubMed  Google Scholar 

  15. Gurzu S, Beleaua MA, Egyed-Zsigmond E, et al. Unusual location of hydatid cysts: report of two cases in the heart and hip joint of Romanian patients. Korean J Parasitol. 2017;55(4):429–31.

    PubMed  PubMed Central  Google Scholar 

  16. Melissa DJ, John RP. Fungal infections of the bones and joints. Curr Infect Dis Rep. 2001;3(5):450–60.

    Google Scholar 

  17. Anagnostakos K, Kelm J, Schmitt E, et al. Fungal periprosthetic hip and knee joint infections clinical experience with a 2-stage treatment protocol. J Arthroplast. 2012;27(2):293–8.

    Google Scholar 

  18. Chen S, Chen Y, Zhou YQ, et al. Candida glabrata-induced refractory infectious arthritis: a case report and literature review. Mycopathologia. 2019;184(2):283–93.

    PubMed  Google Scholar 

  19. Elias JA, Michael RM, Michael AP. Clinical mycology. 2nd ed. Amsterdam: Elsevier; 2009. p. 525–45.

    Google Scholar 

  20. Hung CY, Hsu AP, Holland SM, et al. A review of innate and adaptive immunity to coccidioidomycosis. Med Mycol. 2019;57(Suppl 1):S85–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu K, Qiyong G, Ping H. Medical imaging. 8th ed. Beijing: People’s Health Publishing House; 2018.

    Google Scholar 

  22. Lima AL, Oliveira PR, Carvalho VC, et al. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18(5):526–34.

    PubMed  PubMed Central  Google Scholar 

  23. Zhi Y, Jian L, Hu Y, et al. The application of anti-infective active bone in the treatment of adult traumatic osteomyelitis. Chin J Trauma. 2009;4(25):333–7.

    Google Scholar 

  24. Kan JH, Young RS, Yu C. Clinical impact of gadolinium in the MRI diagnosis of musculoskeletal infection in children. Pediatr Radiol. 2010;40(7):1197–205.

    PubMed  Google Scholar 

  25. Gotthardt M, Bleeker-Rovers CP, Boerman OC, et al. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J Nucl Med. 2010;51(12):1937–49.

    PubMed  Google Scholar 

  26. Averill LW, Hernandez A, Gonzalez L, et al. Diagnosis of osteomyelitis in children: utility of fat-suppressed contrast-enhanced MRI. AJR Am J Roentgenol. 2009;192(5):1232–8.

    PubMed  Google Scholar 

  27. Jaramillo D. Infection: musculoskeletal. Pediatr Radiol. 2011;41(1):S127–34.

    PubMed  Google Scholar 

  28. Browne LP, Guillerman RP, Orth RC, et al. Community-acquired staphylococcal musculoskeletal infection in infants and young children: necessity of contrast-enhanced MRI for the diagnosis of growth cartilage involvement. AJR Am J Roentgenol. 2012;198(1):194–9.

    PubMed  Google Scholar 

  29. Guillerman RP. Osteomyelitis and beyond. Pediatr Radiol. 2013;43(Suppl 1):S193–203.

    PubMed  Google Scholar 

  30. Meiwen Z. MRI features and diagnostic utility of chronic osteomyelitis. Chin J CT MRI. 2013;11(1):105–10.

    Google Scholar 

  31. Prieto-Perez L, Perez-Tanoira R, Petkova-Saiz E, et al. Osteomyelitis: a descriptive study. Clin Orthop Surg. 2014;6(1):20–5.

    PubMed  PubMed Central  Google Scholar 

  32. Acikgoz G, Averill LW. Chronic recurrent multifocal osteomyelitis: typical patterns of bone involvement in whole-body bone scintigraphy. Nucl Med Commun. 2014;35(8):797–807.

    PubMed  Google Scholar 

  33. Song C, Xingyu C, Wang G, et al. MRI features of atypical chronic osteomyelitis. Diag Imaging Interven Radiol. 2013;6:471–4.

    Google Scholar 

  34. Yan Z, Zhu Y, Zitao Z, et al. Progress in imaging research on the diagnosis of chronic osteomyelitis. Chin J Orthop Trauma. 2016;1(18):89–92.

    Google Scholar 

  35. Bires AM, Kerr B, George L. Osteomyelitis: an overview of imaging modalities. Crit Care Nurs Q. 2015;38(2):154–64.

    PubMed  Google Scholar 

  36. Hedrich CM, Hahn G, Girschick HJ, et al. A clinical and pathomechanistic profile of chronic nonbacterial osteomyelitis/chronic recurrent multifocal osteomyelitis and challenges facing the field. Expert Rev Clin Immunol. 2013;9(9):845–54.

    PubMed  Google Scholar 

  37. Kudva A, Kamath AT, Dhara V, et al. Chronic recurrent osteomyelitis: a surgeon’s enigma. J Oral Pathol Med. 2019;48(2):180–4.

    PubMed  Google Scholar 

  38. Harmer JL, Pickard J, Stinchcombe SJ. The role of diagnostic imaging in the evaluation of suspected osteomyelitis in the foot: a critical review. Foot (Edinb). 2011;21(3):149–53.

    Google Scholar 

  39. Wang GL, Zhao K, Liu ZF, et al. A meta-analysis of fluorodeoxyglucose-positron emission tomography versus scintigraphy in the evaluation of suspected osteomyelitis. Nucl Med Commun. 2011;32(12):1134–42.

    PubMed  Google Scholar 

  40. Nag HL, Kancherla R, Malpura A. Brodie’s abscess of medial distal femoral condyle after a thorn prick: rare clinical presentation. Chin J Traumatol. 2012;15(2):126–8.

    PubMed  Google Scholar 

  41. Agrawal P, Sobti A. A Brodie’s abscess of femoral neck mimicking osteoid osteoma: diagnostic approach and management strategy. Ethiop J Health Sci. 2016;26(1):81–4.

    PubMed  PubMed Central  Google Scholar 

  42. Kanoun ML, Khorbi A, Khmiri C, et al. Diagnosis and treatment of Brodie’s abscess in adults: about twenty cases. Tunis Med. 2007;85(10):857–61.

    PubMed  Google Scholar 

  43. Olasinde AA, Oluwadiya KS, Adegbehingbe OO. Treatment of Brodie’s abscess: excellent results from curettage, bone grafting and antibiotics. Singap Med J. 2011;52(6):436–9.

    CAS  Google Scholar 

  44. Heng Z, Fei C, Yi L, et al. A case of Brodie abscess involving epiphyseal plate. Chin Med J. 2018;98(17):1366–7.

    Google Scholar 

  45. Qi R, Colmegna I. Brodie abscess. CMAJ. 2017;189(3):e117.

    PubMed  PubMed Central  Google Scholar 

  46. Foster CE, Taylor M, Schallert EK, et al. Brodie abscess in children: a 10-year single institution retrospective review. Pediatr Infect Dis J. 2019;38(2):32–4.

    Google Scholar 

  47. Hao J. Bone and joint MRI. 2nd ed. Shanghai: Shanghai Science and Technology Press; 2011.

    Google Scholar 

  48. Min Z, Yaling C, Yuke L, et al. Application of image fusion technology to diagnose bone inflammation. J Traditional Chin Orthop Traumatol. 2010;22(11):22–6.

    Google Scholar 

  49. Strobel K, Hany TF, Exner GU. PET/CT of a Brodie abscess. Clin Nucl Med. 2006;31(4):210.

    PubMed  Google Scholar 

  50. Segev E, Hayek S, Lokiec F, et al. Primary chronic sclerosing (Garré’s) osteomyelitis in children. J Pediatr Orthop B. 2001;10(4):360–4.

    CAS  PubMed  Google Scholar 

  51. Akgül HM, Çağlayan F, Günen Yılmaz S, et al. Garre’s osteomyelitis of the mandible caused by infected tooth. Case Rep Dent. 2018;8:1409539.

    Google Scholar 

  52. Wang G, Xu H, Xie J, et al. Sequential sclerosing osteomyelitis in bilateral tibia:1 case report. J Clin Orthop. 2014;17(1):116.

    CAS  Google Scholar 

  53. Ogawa A, Miyate H, Nakamura Y, et al. Treating chronic diffuse sclerosing osteomyelitis of the mandible with saucerization and autogenous bone grafting. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(4):390.

    CAS  PubMed  Google Scholar 

  54. Bai S, Zhang H, Li Z, et al. A 53-year-old man with a sclerosing rib lesion: a case report. Medicine (Baltimore). 2017;96(47):e8692.

    Google Scholar 

  55. Shen S, Guozhi Z. Status quo of researches on etiology and treatment of diffuse Sclerosing osteomyelitis in mandible. J Jinan Univ. 2003;24(2):88–92.

    CAS  Google Scholar 

  56. Hayati MA, Fatma C, Sevcihan GY, et al. Garre’s osteomyelitis of the mandible caused by infected tooth. Case Rep Dent. 2018;2018:1409539.

    Google Scholar 

  57. Rongjie B, Cheng X, Xiang G, et al. Comparison of radiography, CT and MR imaging in detection of atypical osteomyelitis. J China Clin Med Imaging. 2008;19(7):488–92.

    Google Scholar 

  58. Van de Meent MM, Pichardo SEC, Rodrigues MF, et al. Radiographic characteristics of chronic diffuse sclerosing osteomyelitis/tendoperiostitis of the mandible: a comparison with chronic suppurative osteomyelitis and osteoradionecrosis. J Craniomaxillofac Surg. 2018;46(9):1631–6.

    PubMed  Google Scholar 

  59. Singh S, Graham ME, Bullock M, et al. Chronic sclerosing osteomyelitis of the mandible treated with hemimandibulectomy and fibular free flap reconstruction. Plast Reconstr Surg Glob Open. 2016;3(12):e580.

    PubMed  PubMed Central  Google Scholar 

  60. Goff TAJ, Rambani R, Ng AB. Current concepts in the management of periprosthetic fungal joint infection using antifungal bone cement. Curr Orthop Pract. 2014;25(2):169–74.

    Google Scholar 

  61. Melissa DJ, John RP. Fungal infections of the bones and joints. Curr Infect Dis Rep. 2007;3(5):450–60.

    Google Scholar 

  62. Giles JT, Bathon JM. Serious infections associated with anticytokine therapies in the rheumatic diseases. J Intensive Care Med. 2004;19(6):320–34.

    PubMed  Google Scholar 

  63. Vechi HT, Theodoro RC, Oliveira ALD, et al. Invasive fungal infection by Cryptococcus neoformans var. grubii with bone marrow and meningeal involvement in a HIV-infected patient: a case report. BMC Infect Dis. 2019;19(1):220.

    PubMed  PubMed Central  Google Scholar 

  64. Henry MW, Miller AO, Walsh TJ, et al. Fungal musculoskeletal infections. Infect Dis Clin N Am. 2017;31(2):353–68.

    Google Scholar 

  65. Alvarenga JA, Martins DE, Kanas M, et al. Paracoccidioidomyco- sis in the spine: case report and review of the literature. Sao Paulo Med J. 2016;134(3):263–7.

    PubMed  Google Scholar 

  66. Ferreira LC, Barroso PF, Tonomura E, et al. Osteomyelitis caused by Sporothrix schenckii in an immunocompetent patient. Rev Soc Bras Med Trop. 2016;49(4):527–9.

    PubMed  Google Scholar 

  67. Belthur MV, Blair JE, Shrader MW, et al. Musculoskeletal coccidioidomycosis. Curr Orthop Pract. 2018;29(4):400–6.

    Google Scholar 

  68. Leroy-Freschini B, Treglia G, Argemi X, et al. 18F-FDG PET/CT for invasive fungal infection in immunocompetent patients. QJM. 2018;111(9):613–22.

    CAS  PubMed  Google Scholar 

  69. Davies G, Rolle AM, Maurer A, et al. Toward translational ImmunoPET/MR imaging of invasive pulmonary aspergillosis: the humanised monoclonal antibody jf5 detects aspergillus lung infections in vivo. Theranostics. 2017;7(14):3398–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Esmaeilnejad-Ganji SM, Esmaeilnejad-Ganji SMR. Osteoarticular manifestations of human brucellosis: a review. World J Orthop. 2019;10(2):54–62.

    PubMed  PubMed Central  Google Scholar 

  71. Zheng R, Xie S, Lu X, et al. A systematic review and meta-analysis of epidemiology and clinical manifestations of human brucellosis in China. Biomed Res Int. 2018;2018:1–10.

    Google Scholar 

  72. Ulu KA, Metan G, Alp E. Clinical presentations and diagnosis of brucellosis. Recent Pat Antiinfect Drug Discov. 2013;8(1):34–41.

    Google Scholar 

  73. Mehanic S, Baljic R, Mulabdic V, et al. Osteoarticular manifestations of brucellosis. Med Arh. 2012;66(3 Suppl 1):24–6.

    Google Scholar 

  74. Elnour EF, Nisreen S. Brucella septic arthritis: case reports and review of the literature. Case Rep Infect Dis. 2016;2016:4687840.

    Google Scholar 

  75. Avijgan M, Rostamnezhad M, Jahanbani-Ardakani H. Clinical and serological approach to patients with brucellosis: a common diagnostic dilemma and a worldwide perspective. Microb Pathog. 2019;129:125–30.

    PubMed  Google Scholar 

  76. Editorial Board of Chinese Journal of Infectious Diseases. Expert consensus on diagnosis & treatment of brucellosis. Chin J Infect Dis. 2017;35(12):705.

    Google Scholar 

  77. Wang Y. Chinese medical imaging·musculoskeletal system. 2nd ed. Beijing: People’s Medical Publishing House; 2012.

    Google Scholar 

  78. Bozgeyik Z, Aglamis S, Bozdag PG, et al. Magnetic resonance imaging findings of musculoskeletal brucellosis. Clin Imaging. 2014;38(5):719–23.

    PubMed  Google Scholar 

  79. Remide A, Berna DM. Musculoskeletal brucellosis. Semin Musculoskelet Radiol. 2011;15(5):470–9.

    Google Scholar 

  80. Oztekin O, Calli C, Adibelli Z, et al. Brucellar spondylodiscitis: magnetic resonance imaging features with conventional sequences and diffusion-weighted imaging. Radiol Med. 2010;115(5):794–803.

    CAS  PubMed  Google Scholar 

  81. Held M, Bruins MF, Castelein S, et al. A neglected infection in literature: childhood musculoskeletal tuberculosis: a bibliometric analysis of the most influential papers. Int J Mycobacteriol. 2017;6(3):229–38.

    PubMed  Google Scholar 

  82. Qian Y, Han Q, Liu W, et al. Characteristics and management of bone and joint tuberculosis in native and migrant population in Shanghai during 2011 to 2015. BMC Infect Dis. 2018;18(1):543.

    PubMed  PubMed Central  Google Scholar 

  83. Moore SL, Rafii M. Advanced imaging of tuberculosis arthritis. Semin Musculoskelet Radiol. 2003;7(2):143–54.

    Google Scholar 

  84. Feng N, Qiuye W. Research progress on the susceptibility of tuberculosis of bone and joint and polymorphisms of related genes. J Chin Pract Diagn Therapy. 2017;31(4):391–3.

    Google Scholar 

  85. Broderick C, Hopkins S, Mack DJF, et al. Delays in the diagnosis and treatment of bone and joint tuberculosis in the United Kingdom. Bone Joint J. 2018;100-B(1):119–24.

    CAS  PubMed  Google Scholar 

  86. Tang Y, Yin L, Tang S, et al. Application of molecular, microbiological, and immunological tests for the diagnosis of bone and joint tuberculosis. J Clin Lab Anal. 2018;32(2):e22260.

    Google Scholar 

  87. Auguste P, Tsertsvadze A, Pink J, et al. Comparing interferon- gamma release assays with tuberculin skin test for identifying latent tuberculosis infection that progresses to active tuberculosis: systematic review and meta-analysis. BMC Infect Dis. 2017;17(1):200.

    PubMed  PubMed Central  Google Scholar 

  88. Chinese Society for Tuberculosis, Chinese Medical Association and Editorial Board of Chinese Journal of Tuberculosis and Respiratory Diseases. Recommendations for the application of interferon-γ release assays in China. Chin J Tuberculosis Respirat Dis. 2014;37(10):744–7.

    Google Scholar 

  89. Wang T, Tan YJ, Wu SJ, et al. The ratio of tuberculosis-specific antigen to phytohemagglutinin in T-SPOT assay in the diagnosis of active tuberculosis. Zhonghua Jie He Hu Xi Za Zhi. 2019;42(4):262–7.

    CAS  Google Scholar 

  90. Madhok R. Evaluation of apparent diffusion coefficient values in spinal tuberculosis by MRI. J Clin Diagn Res. 2016;10(8):TC19–23.

    PubMed  PubMed Central  Google Scholar 

  91. Albano D, Treglia G, Desenzani P, et al. Incidental unilateral tuberculous sacroiliitis detected by 18F-FDG PET/CT in a patient with abdominal tuberculosis. Asia Oceania J Nucl Med Biol. 2017;5(2):152–6.

    Google Scholar 

  92. Song XH, Ding LW, Wen H. Bone hydatid disease. Postgrad Med J. 2007;83(982):536–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Manciulli T, Mustapayeva A, Juszkiewicz K, et al. Cystic echinococcosis of the bone in Kazakhstan. Case Rep Infect Dis. 2018;2018:9682508.

    PubMed  PubMed Central  Google Scholar 

  94. Agudelo HN, Brunetti E, McCloskey C. Cystic echinococcosis. Clin Microbiol. 2016;54(3):518–23.

    Google Scholar 

  95. Cattaneo L, Manciulli T, Cretu CM, et al. Cystic echinococcosis of the bone: a European multicenter study. Am J Trop Med Hyg. 2019;100(3):617–21.

    PubMed  PubMed Central  Google Scholar 

  96. Meinel TR, Gottstein B, Geib V, et al. Vertebral alveolar echinococcosis-a case report, systematic analysis, and review of the literature. Lancet Infect Dis. 2018;18(3):e87–98.

    PubMed  Google Scholar 

  97. Gurzu S, Beleaua MA, Egyedzsigmond E, et al. Unusual location of hydatid cysts: report of two cases in the heart and hip joint of Romanian patients. Korean J Parasitol. 2017;55(4):429–31.

    PubMed  PubMed Central  Google Scholar 

  98. Dapeng L, Xiaohui F, Jingping Z, et al. Application of EgCF, EgP, B (EgB) and Em2 tests of hydatid by GAB and ELISA in diagnosis of bone hydatid disease. Chin J Orthop. 2010;30(2):198–202.

    Google Scholar 

  99. Thapa S, Ghosh A, Ghartimagar D, et al. Hydatidosis of infratemporal fossa with proptosis-an unusual presentation: a case report and review of the literature. J Med Case Rep. 2018;12(1):309.

    PubMed  PubMed Central  Google Scholar 

  100. Salamone G, Licari L, Randisi B, et al. Uncommon localizations of hydatid cyst. Review of the literature. G Chir. 2016;37(4):180–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J, Wenxiao J, Hong C, et al. Value of MRH in diagnosis of alveolar echinococcosis. Chin J Radiol. 2009;43(4):402–5.

    Google Scholar 

  102. Willegger M, Kolb A, Windhager R, et al. Acute haematogenous osteomyelitis in children: diagnostic algorithm and treatment strategies. Orthopade. 2017;46(6):541–56.

    CAS  PubMed  Google Scholar 

  103. Alaya Z, Zaghouani H, Osman W, et al. Septic arthritis of the pubis symphysis: clinical and therapeutic features. Pan Afr Med J. 2017;26:215.

    PubMed  PubMed Central  Google Scholar 

  104. Kehl-Fie TE, Porsch EA, Yagupsky P, et al. Examination of type IV pilus expression and pilus-associated phenotypes in Kingella kingae clinical isolates. Infect Immun. 2010;78:1692.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boesen M, Kubassova O, Sudot-Szopińska I, et al. MR imaging of joint infection and inflammation with emphasis on dynamic contrast-enhanced MR imaging. PET Clin. 2018;13(4):523–50.

    PubMed  Google Scholar 

  106. Montgomery NI, Epps HR. Pediatric septic arthritis. Orthop Clin North Am. 2017;48(2):209–16.

    PubMed  Google Scholar 

  107. Wu K, Wang T, Liang H, et al. Comparison and analysis of display of articular cartilage of knee by different 3.0T MRI technologies. J Pract Radiol. 2013;8(22):1010–3.

    Google Scholar 

  108. Crema MD, Roemer FW, Marra MD, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.

    PubMed  Google Scholar 

  109. Li X, Cheng J, Lin K, et al. Quantitative MRI using T1ρ and T2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011;29(3):324–34.

    CAS  PubMed  Google Scholar 

  110. Theologis AA, Schairer WW, Carballido-Gamio J, et al. Longitudinal analysis of T1ρ and T2 quantitative MRI of knee cartilage laminar organization following microfracture surgery. Knee. 2012;19(5):652–7.

    PubMed  Google Scholar 

  111. Yu K, Shen M. Autoinflammatory bone disease. Chin Med J. 2016;96(15):1230–2.

    CAS  Google Scholar 

  112. Colina M, Govoni M, Orzincolo C, et al. Clinical and radiologic evolution of synovitis, acne, pustulosis, hyperostosis, and osteosis syndrome: a single center study of a cohort of 71 subjects. Arthritis Rheum. 2009;61:813–21.

    PubMed  Google Scholar 

  113. Schnable A, Range U, Hahn G, et al. Unexpectedly high incidences of chronic non-bacterial as compared to bacterial osteomyelitis in children. Rheumatol Int. 2016;36:1737–45.

    Google Scholar 

  114. Wolber C, David-Jelinek K, Udvardi A, et al. Successful therapy of sacroiliitis in SAPHO syndrome by etanercept. Wien Med Wochenschr. 2011;161(7–8):204–8.

    PubMed  Google Scholar 

  115. Jurik AG. Chronic regional multifocal osteomyelitis. Semin Musculoskelet Radiol. 2004;8:243–53.

    PubMed  Google Scholar 

  116. Govoni M, Colina M. SAPHO syndrome and infections. Autoimmun Rev. 2009;81(8):256–9.

    Google Scholar 

  117. Hofmann SR, Bottger F, Range U, et al. Serum interleukin-6 and CCL11/eotaxin may be suitable biomarkers for the diagnosis of chronic nonbacterial osteomyelitis. Front Pediatr. 2017;5:1–11.

    Google Scholar 

  118. Jansson A, Renner ED. Classification of non-bacterial osteitis: retrospective study of clinical, immunological and genetic aspects in 89 patients. Rheumatology. 2007;46(1):154–60.

    CAS  PubMed  Google Scholar 

  119. Jansson AF, Muller TH, Gliera L, et al. Clinical score for nonbacterial osteitis in children and adults. Arthritis Rheum. 2009;60(4):1152–9.

    PubMed  Google Scholar 

  120. Zhao Y, Dedeoglu F, Ferguson PJ, et al. Physicians’ perspectives on the diagnosis and treatment of chronic nonbacterial osteomyelitis. Int J Rheumatol. 2017;2017:7694942.

    PubMed  PubMed Central  Google Scholar 

  121. Depasquale R, Kumar N, Lalam RK, et al. SAPHO: what radiologists should know. Radiol Med. 2014;119(3):156–63.

    Google Scholar 

  122. Nguyen MT, Borchers A, Selmi C, et al. The SAPHO syndrome. Semin Arthritis Rheum. 2012;42(3):254–65.

    PubMed  Google Scholar 

  123. Xu W, Chen L, Xiali S, et al. Sacroiliac joint MRI findings in SAPHO syndrome. Chin J Magn Reson Imaging. 2017;8(6):441–5.

    Google Scholar 

  124. Zemann W, Pau M, Feichtinger M, et al. SAPHO syndrome with affection of the mandible: diagnosis, treatment, and review of literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(2):190–5.

    PubMed  Google Scholar 

  125. Beck C, Girschick HJ, Morbach H, et al. Mutation screening of the IL-1 receptor antagonist gene in chronic non-bacterial osteomyelitis of childhood and adolescence. Clin Exp Rheumatol. 2011;29:1040–3.

    PubMed  Google Scholar 

  126. Chen L, Jing L, Dong Z, et al. Tumor necrosis factor-alpha blockers in SAPHO syndrome. J Med Res. 2013;42(4):91–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, H., Xie, L., Wang, P. (2022). Infectious Lesions in Bones and Joints. In: Li, H., Pan, S., Zhou, J. (eds) Radiology of Infectious and Inflammatory Diseases - Volume 5. Springer, Singapore. https://doi.org/10.1007/978-981-16-5003-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5003-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5002-4

  • Online ISBN: 978-981-16-5003-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics