Skip to main content

On Some Modern Simulation Techniques for Studying THz ATT Sources

  • Chapter
  • First Online:
Generation, Detection and Processing of Terahertz Signals

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 794))

  • 1125 Accesses

Abstract

Great demand of suitable terahertz (THz) sources requires optimized design and appropriate simulation tool for designing and investigating the device capability at the design spectrum before actual fabrication. Design and simulation of complex devices like THz avalanche transit time (ATT) diodes require comprehensive and accurate simulation model for small-signal, large-signal and noise simulation before the actual fabrication. This chapter is devoted to summarize these three types of simulation methodologies for THz ATT sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel PH (2007) THz instruments for space. IEEE Trans Antenn Propag 55:2957–2965

    Article  Google Scholar 

  2. Grischkowsky D, Keiding S, Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B 7:2006–2015

    Article  Google Scholar 

  3. Debus C, Bolivar PH (2007) Frequency selective surfaces for high sensitivity terahertz sensing. Appl Phys Lett 91:184102

    Google Scholar 

  4. Yasui T, Yasuda T, Sawanaka K, Araki T (2005) Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt 44:6849–6856

    Article  Google Scholar 

  5. Stoik CD, Bohn MJ, Blackshire JL (2008) Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express 16:17039–17051

    Article  Google Scholar 

  6. Jördens C, Koch M (2008) Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt Eng 47:037003

    Google Scholar 

  7. Fitzgerald AJ, Cole BE, Taday PF (2005) Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J Pharm Sci 94:177–183

    Article  Google Scholar 

  8. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech 52:2438–2447

    Article  Google Scholar 

  9. Ward J, Schlecht E, Chattopadhyay G, Maestrini A, Gill J, Maiwald F, Javadi H, Mehdi I (2004) Capability of THz sources based on schotiky diode frequency multiplier chains. IEEE MTT-S Digest 12:1587–1590

    Google Scholar 

  10. Heyminck S, Güsten R, Graf U, Stutzki J, Hartogh P, Hübers HW, Ricken O, Klein B (2009) GREAT: ready for early science aboard SOFIA. Proceeding 20th international symposium space THz techniques. Charlottesville, VA., pp 315–317

    Google Scholar 

  11. Crowe TW, Hesler JL, Retzloff SA, Pouzou C, Schoenthal GS (2011) Solid state LO sources for greater than 2THz. 2011 ISSTT digest, 22nd symposium on space terahertz technology. Tucson Arizona, USA

    Google Scholar 

  12. Crowe TW, Hesler JL, Retzloff SA, Pouzou C, Hester JL (2011) “Multiplier based sources for frequencies above 2 THz,” 36th international conference on infrared, millimeter and terahertz sources (IRMMW-THz). p 1

    Google Scholar 

  13. Maestrini A, Mehdi I, Siles JV, Ward J, Lin R, Thomas B, Lee C, Gill J, Chattopadhyay G, Schlecht E, Pearson J, Siegel P (2012) First demonstration of a tunable electronic source in the 2.5 to 2.7 THz range. IEEE Trans Terahertz Sci Techn 3:112–123

    Google Scholar 

  14. Williams BS (2007) Terahertz quantum-cascade lasers. Nat Photonics 1:617–626

    Article  Google Scholar 

  15. Lai R, Mei X, Deal W, Yoshida W, Kim Y, Liu P, Lee J, Uyeda J, Radisic V, Lange M, Gaier T, Samoska L, Fung A (2007)Sub 50 nm InP HEMT device with fmax greater than 1 THz. In: Proceeding IEEE international electron devices meeting pp 609–611

    Google Scholar 

  16. Deal W, Mei X, Radisic V, Leong K, Sarkozy S, Gorospe B, Lee J, Liu P, Yoshida W, Zhou J, Lange M, Uyeda J, Lai R (2010) Demonstration of a 0.48 THz amplifier module using InP HEMT transistors. IEEE Microw Wireless Compon Lett 20(5):289–291

    Google Scholar 

  17. Urteaga M, Seo M, Hacker J, Griffith Z, Young A, Pierson R, Rowell P, Skalare A, Rodwell M (2010) InP HBT integrated circuit technology for terahertz frequencies. In: Proceeding IEEE compound semiconductor integrated circuit symposia. pp 1–4

    Google Scholar 

  18. Lobisser E, Griffith Z, Jain V, Thibeault B, Rodwell M, Loubychev D, Snyder A, Wu Y, Fastenau J, Liu A (May 2009) 200-nm InGaAs/InP type-I DHBT employing a dual-sidewall emitter process demonstrating fmax >> 800 GHz and fT = 360 GHz. In: Proceeding IEEE international conference indium phosphide related materials. pp 16–19

    Google Scholar 

  19. Seo M, Urteaga M, Young A, Jain V, Griffith Z, Hacker J, Rowell P, Pierson R, Rodwell M (May 2010) 300 GHz fixed-frequency and voltage-controlled fundamental oscillators in an InP HBT process. In: IEEE MTT-S international microwave symposium digestivas. pp 272–275

    Google Scholar 

  20. Hacker J, Seo M, Young A, Griffith Z, Urteaga M, Reed T, Rodwell M (May 2010) THz MMICs based on InP HBT technology. In: IEEE MTT-S international microwave symposium digestivas. pp 1126–1129

    Google Scholar 

  21. Seo M, Urteaga M, Hacker J, Young A, Griffith Z, Jain V, Pierson R, Rowell P, Skalare A, Peralta A, Lin R, Pukala D, Rodwell M (2011) InP HBT IC technology for terahertz frequencies: fundamental oscillators up to 0.57 THz. IEEE J Solid-State Circ 46(10):2203–2214

    Google Scholar 

  22. Gray WW, Kikushima L, Morentc NP, Wagner RJ (1969) Applying IMPATT power sources to modern microwave systems. IEEE J Solid-State Circ 4:409–413

    Article  Google Scholar 

  23. Chang Y, Hellum JM, Paul JA, Weller KP (1977) Millimeter-wave IMPATT sources for communication applications. IEEE MTT-S Int Microw Symp Dig 4:216–219

    Article  Google Scholar 

  24. Midford TA, Bernick RL (1979) Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans Microwave Theory Tech 27:483–492

    Article  Google Scholar 

  25. Luy JF, Casel A, Behr W, Kasper E (1987) A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans Electron Devices 34:1084–1089

    Article  Google Scholar 

  26. Wollitzer M, Buchler J, Schafflr F, Luy JF (1996) D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron Lett 32:122–123

    Article  Google Scholar 

  27. Dalle C, Rolland P, Lieti G (1990) Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans Electron Devices 37:227–236

    Article  Google Scholar 

  28. Luschas M, Judaschke R, Luy JF (2002) Measurement results of packaged millimeter-wave silicon IMPATT diodes.” In: Proceeding of 27th international conference on infrared and millimeter waves, conference digest. pp 135–136

    Google Scholar 

  29. Luschas M, Judaschke R, Luy JF (2002) Simulation and measurement results of 150 GHz integrated silicon IMPATT diodes”. IEEE MTT-S Int Microw Symp Dig 12:1269–1272

    Google Scholar 

  30. Huang HC (1973) A modified GaAs IMPATT structure for high-efficiency operation. IEEE Trans Electron Dev 20(5):482–486

    Article  Google Scholar 

  31. Goldwasser RE, Rosztoczy FE (1974) High efficiency GaAs low-high-low IMPATTs. Appl Phys Lett 25:92

    Article  Google Scholar 

  32. Bozler CO, Donelly JP, Murphy RA, Laton RW, Sudhury RN, Lindley WT (1976) High efficiency ion implanted Lo-hi-lo GaAs IMPATT diodes. Appl Phys Lett 29:123–125

    Article  Google Scholar 

  33. Eisele H (1989) Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid State Electron 32(3):253–257

    Article  Google Scholar 

  34. Eisele H (1990) GaAs W-band IMPATT diode for very low noise oscillations. Electron Lett 26(2):109–110

    Article  Google Scholar 

  35. Eisele H, Hadded GI (1992) GaAs single-drift flat profile IMPATT diodes for CW operation at D band. Electron Lett 28(23):2176–2177

    Article  Google Scholar 

  36. Kearney MJ, Couch NR, Stephens JS, Smith RS (1992) Low noise, high efficiency GaAs IMPATT diodes at 30GHz. Electron Lett 28(8):706–708

    Article  Google Scholar 

  37. Curow M (1994) Proposed GaAs IMPATT device structure for D-band applications. Electronic Lett 30(19):1629–1631

    Article  Google Scholar 

  38. Tschernitz M, Freyer J, Grothe H (1994) GaAs read-type IMPATT diodes for D-band. Electron Lett 30(13):1070–1071

    Article  Google Scholar 

  39. Tschernitz M, Freyer J (1995) 140 GHz GaAs double-read IMPATT diodes. Electron Lett 31(7):582–583

    Article  Google Scholar 

  40. Berenz JJ, Fank FB, Hierl TL (1978) Ion-implanted p-n junction Indium-phosphide IMPATT diodes. Electron Lett 14(21):683–684

    Article  Google Scholar 

  41. Banerjee JP, Pati SP, Roy SK (1984) High frequency characterisation of double drift region InP and GaAs diode. Appl Phys A 48:437–443

    Article  Google Scholar 

  42. Shih HD, Bayraktaroglu B, Duncan WM (1983) Growth of millimeter-wave GaAs IMPATT structures by molecular beam epitaxy. J Vacuum Sci Technol B: Microelectron Nanometer Struct 1:199–201

    Article  Google Scholar 

  43. Mukherjee M, Mazumder N, Roy SK (2009) Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 THz frequency regime. Act Passive Electron Compon 2009:1–9

    Google Scholar 

  44. Panda AK, Parida RK, Agarwala NC, Dash GN (2007) A comparative study on the high band gap materials (GaN and SiC)-based IMPATTs. In: Proceeding of Asia-Pacific microwave conference. pp 1–4

    Google Scholar 

  45. Panda AK, Pavlidis D, Alekseev E (2001) DC and high-frequency characteristics of GaN-based IMPATTs. IEEE Trans Electron Dev 48:820–823

    Article  Google Scholar 

  46. Banerjee S, Mukherjee M, Banerjee JP (2010) Bias current optimization of Wurtzite-GaN DDR IMPATT diode for high power operation at THz frequencies. Int J Adv Sci Technol 16:12–20

    Google Scholar 

  47. Acharyya A, Banerjee JP (2014) Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci 4:1–14

    Article  Google Scholar 

  48. Acharyya A, Banerjee JP (2013) Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J Res 59(2):118–127

    Article  Google Scholar 

  49. Yuan L, James A, Cooper JA, Melloch MR, Webb KJ (2001) Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Dev Lett 22:266–268

    Article  Google Scholar 

  50. Vassilevski KV, Zorenko AV, Zekentes K, Tsagaraki K, Bano E, Banc C, Lebedev A (2001) 4H-SiC IMPATT diode fabrication and testing. Technical digest of international conference on SiC and related materials, Tsukuba, Japan. pp 713–714

    Google Scholar 

  51. Trew RJ, Yan JB, Mock PM (1991) The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE 79(5):598–620

    Article  Google Scholar 

  52. Mock PM, Trew RJ (1989) RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. In: Proceeding of IEEE/cornell conference advanced concepts in high-speed semiconductor devices and circuits. pp 383–389

    Google Scholar 

  53. Misawa T (1966) The negative resistance in p-n junctions under avalanche breakdown conditions Part-1. IEEE Trans Electron Device 13:137–151

    Article  Google Scholar 

  54. Gilden M, Hines ME (1966) Electronic tuning effects in read microwave avalanche diode. IEEE Trans Electron Devices 13:169–175

    Article  Google Scholar 

  55. Sze SM, Gibbons G (1966) Avalanche breakdown voltages of abrupt and linearly graded p-n junctions in Ge, Si GaAs and InP. Appl Phys Lett 8:111–112

    Article  Google Scholar 

  56. Roy SK, Sridharan M, Ghosh R, Pal BB (1979) Computer method for the dc field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer. In: Miller JH (ed) Proceeding of the 1st conference on numerical analysis of semiconductor devices (NASECODE I). Dublin, Ireland. pp 266–274

    Google Scholar 

  57. Roy SK, Banerjee JP, Pati SP (1985) A computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT diodes. In: Proceeding 4th conference on numerical analysis of semiconductor devices (NASECODE IV) (Dublin). Ireland. pp 494–500

    Google Scholar 

  58. Sridharan M, Roy SK (1978) Computer studies on the widening of the avalanche zone and decrease on efficiency in silicon X-band symmetrical DDR. Electron Lett 14:635–637

    Article  Google Scholar 

  59. Sridharan M, Roy SK (1980) Effect of mobile space charge on the small signal admittance of silicon DDR. Solid State Electron 23:1001–1003

    Article  Google Scholar 

  60. Dash GN, Pati SP (1991) Small-signal computer simulation of IMPATT diodes including carrier diffusion. Semicond Sci Technol 6:348–355

    Article  Google Scholar 

  61. Dash GN, Pati SP (1992) A generalized simulation method for IMPATT mode operation and studies on the influence of tunnel current on IMPATT properties. Semicond Sci Technol 7:222–230

    Article  Google Scholar 

  62. Dalle C, Rolland PA (1989) Drift-diffusion versus energy model for millimetre-wave IMPATT diodes modelling. Int J Numer Model Electron Networks Devices Fields 2:61–73

    Article  Google Scholar 

  63. Gummel HK, Blue JL (1967) A small-signal theory of avalanche noise in IMPATT diodes. IEEE Trans Electron Devices 14:569–580

    Article  Google Scholar 

  64. Acharyya A, Banerjee S, Banerjee JP (2013) Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices. J Comput Electron 12(3):511–525

    Article  Google Scholar 

  65. Acharyya A, Mallik A, Banerjee D, Ganguli S, Das A, Dasgupta S, Banerjee JP (2014) Large-signal characterizations of DDR IMPATT devices based on group III–V semiconductors at millimeter-wave and terahertz frequencies. J Semiconductors 35(8):084003–1–10

    Google Scholar 

  66. Acharyya A, Datta K, Ghosh R, Sarkar M, Sanyal R, Banerjee S, Banerjee JP (2013) Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2):624–631

    Google Scholar 

  67. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, NY

    Google Scholar 

  68. G. Gibbons, Avalanche-diode Microwave Oscillators Oxford: Oxford University Press, pp. 13 and pp. 53, (1973)

    Google Scholar 

  69. Elta EM (1978) The effect of mixed tunneling and avalanche breakdown on microwave transit-time diodes. Ph.D. dissertation, electron physics laboratory, University of Michigan, annals Arbor, MI, Tech. Rep

    Google Scholar 

  70. Kane EO (1961) Theory of tunneling. J Appl Phys 32:83–91

    Article  MathSciNet  MATH  Google Scholar 

  71. Canali C, Ottaviani G, Quaranta AA (1971) Drift velocity of electrons and holes and associated anisotropic effects in silicon. J Phys Chem Solids 32:1707–1720

    Article  Google Scholar 

  72. Dalal VL (1970) Hole velocity in p-GaAs. Appl Phys Lett 16:489–491

    Article  Google Scholar 

  73. Houston PA, Evans AGR (1977) Electron drift velocity in n-GaAs at high electric field. Solid State Electron 20:197–204

    Article  Google Scholar 

  74. Dash GN, Mishra JK, Panda AK (1996) Noise in mixed tunneling avalanche transit time (MITATT) diodes. Solid State Electron 39(10):1473–1479

    Article  Google Scholar 

  75. Mishra JK, Panda AK, Dash GN (1997) An extremely low-noise heterojunction IMPATT. IEEE Trans Electron Devices 44(12):2143–2148

    Article  Google Scholar 

  76. Acharyya A, Mukherjee M, Banerjee JP (2010) Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time (MITATT) diode international journal of electrical and electronics engineering 4(8):577–584

    Google Scholar 

  77. Acharyya A, Mukherjee M, Banerjee JP (2011) Noise in millimeter-wave mixed tunneling avalanche transit time diodes”. Arch Appl Sci Res 3(1):250–266

    Google Scholar 

  78. Banerjee S, Acharyya A, Banerjee JP (Dec 17–19 2012) Millimeter-wave and noise properties of Si~Si1-xGex heterojunction double-drift region MITATT devices at 94 GHz. IEEE Conference CODEC 2012, Kolkata, India. pp 1–4

    Google Scholar 

  79. Haus HA, Statz H, Pucel PA (1971) Optimum noise measure of IMPATT diode. IEEE Trans MTT 19:801–8123

    Article  Google Scholar 

  80. Douglas J, Yuan Y (1987) Finite difference methods for the transient behavior of a semiconductor device. IMA Preprint Series#286, Institute for mathematics and its applications, University of Minnesota, Minnesota

    Google Scholar 

  81. Johnson EO (1965) Physical limitations on frequency and power parameters of transistors. RCA Rev 26:163–177

    Google Scholar 

  82. Baliga BJ (1989) Power semiconductor device figure of merit for high-frequency applications. Electron Device Lett 10(10):455–457

    Article  Google Scholar 

  83. Grant WN (1973) Electron and hole ionization rates in epitaxial Silicon. Solid State Electron 16:1189–1203

    Article  Google Scholar 

  84. Ito M, Kagawa S, Kaneda T, Yamaoka T (1978) Ionization rates for electrons and holes in GaAs. J Appl Phys 49:4607

    Article  Google Scholar 

  85. Kao CW, Crowell CR (1980) Impact ionization by electrons and holes in InP. Solid State Electron 23:881–891

    Article  Google Scholar 

  86. Umebu I, Chowdhury ANMM, Robson PN (1980) Ionization coefficients measured in abrupt InP junction. Appl Phys Lett 36:302–303

    Article  Google Scholar 

  87. Kunihiro K, Kasahara K, Takahashi Y, Ohno Y (1999) Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Letter 20(12):608–610

    Article  Google Scholar 

  88. Konorova EA, Kuznetsov YA, Sergienko VF, Tkachenko SD, Tsikunov AK, Spitsyn AV, Danyushevski YZ (1983) Impact ionization in semiconductor structures made of ion-implanted diamond. Sov Phys—Semicond 17:146

    Google Scholar 

  89. Konstantinov AO, Wahab Q, Nordell N, Lindefelt U (1997) Ionization rates and critical fields in 4H-silicon carbide. Appl Phys Lett 71:90–92

    Article  Google Scholar 

  90. Ferry DK (1975) High-field transport in wide-bandgap semiconductors. Phys Rev B 12:2361

    Article  Google Scholar 

  91. Canali C, Gatti E, Kozlov SF, Manfredi PF, Manfredotti C, Nava F, Quirini A (1979) Electrical properties and performances of neutral diamond nuclear radiation detectors. Nuclear Instrum Methods 160:73

    Article  Google Scholar 

  92. Kramer B, Micrea A (1975) Determination of saturated electron velocity in GaAs. Appl Phys Lett 26:623–624

    Article  Google Scholar 

  93. Shiyu SC, Wang G (2008) High-field properties of carrier transport in bulk wurtzite GaN: monte carlo perspective. J Appl Phys 103:703–708

    Google Scholar 

  94. Vassilevski KV, Zekentes K, Zorenko AV, Romanov LP (2000) Experimental determination of electron drift velocity in 4H-SiC p+n–n+ avalanche diodes. IEEE Electron Dev Lett 21:485–487

    Article  Google Scholar 

  95. Vassilevski KV, Zekentes K, Zorenko AV, Romanov LP, Electronic archive: new semiconductor materials, characteristics and properties. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/index.html (Last accessed on: April 2021)

  96. Zeghbroeck BV (2011) Principles of semiconductor devices. Colorado Press, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, M., Acharyya, A., Biswas, A. (2022). On Some Modern Simulation Techniques for Studying THz ATT Sources. In: Acharyya, A., Biswas, A., Das, P. (eds) Generation, Detection and Processing of Terahertz Signals. Lecture Notes in Electrical Engineering, vol 794. Springer, Singapore. https://doi.org/10.1007/978-981-16-4947-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4947-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4946-2

  • Online ISBN: 978-981-16-4947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics