Skip to main content

Graphene-Based Materials for Efficient Neurogenesis

  • Chapter
  • First Online:
Multifaceted Biomedical Applications of Graphene

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1351))

Abstract

Graphene, a two-dimensional plane-structured carbon allotrope, has outstanding properties. Owing to their unique features, graphene-based materials including graphene derivatives have recently emerged as an ideal material and been used in various fields. Especially, in terms of specific advantages of graphene including great electrical conductivity, high potential to conjugate with biomolecules, and applicability to three-dimensional structures, neurogenesis-based stem cell therapies using graphene-based materials have been reported to be a candidate of treatment for neurodegenerative disease (e.g., Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease). To date, extensive studies on neurogenesis-based stem cell therapies including enhanced neural differentiation and monitoring stem cells behavior have been conducted using graphene-based materials. Herein, we have summarized recent various studies of neurogenesis using graphene-based materials in depth and focused on effect of graphene on functional improvement of neural stem cells and monitoring of differentiation into neural linages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahijado-Guzmán R, Gõmez-Puertas P, Alvarez-Puebla RA, Rivas G, Liz-Marzãn LM (2012) Surface-enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS Nano 6:7514–7520

    Article  PubMed  Google Scholar 

  • Ahn JH, Kim I-R, Kim Y, Kim D-H, Park S-B, Park B-S, Bae M-K, Kim Y-I (2020) The effect of mesoporous bioactive glass nanoparticles/graphene oxide composites on the differentiation and mineralization of human dental pulp stem cells. Nanomaterials 10:620

    Article  CAS  PubMed Central  Google Scholar 

  • Ajiteru O, Sultan MT, Lee YJ, Seo YB, Hong H, Lee JS, Lee H, Suh YJ, Ju HW, Lee OJ (2020) A 3D printable electroconductive biocomposite bioink based on silk fibroin-conjugated graphene oxide. Nano Lett 20:6873–6883

    Article  CAS  PubMed  Google Scholar 

  • Al-Dhahebi AM, Gopinath SCB, Saheed MSM (2020) Graphene impregnated electrospun nanofiber sensing materials: a comprehensive overview on bridging laboratory set-up to industry. Nano Converg 7:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  CAS  Google Scholar 

  • Alvarez-Buylla A, Garcıa-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antoni D, Burckel H, Josset E, Noel G (2015) Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 16:5517–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aznar-Cervantes S, Pagãn A, Martïnez JG, Bernabeu-Esclapez A, Otero TF, Meseguer-Olmo L, Paredes JI, Cenis JL (2017) Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation. Mater Sci Eng C 79:315–325

    Article  CAS  Google Scholar 

  • Bae J, Shin D-S, Ha J-H, Hwang Y, Lee C-S, Kim HJ, Jang A, Park S-H (2020) Flexible chemical sensors using signal generation from cyclodextrin-analyte interactions on polymer composites. Biochip J 14:251–257

    Article  CAS  Google Scholar 

  • Balandin AA, Ghosh S, BAO W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  PubMed  Google Scholar 

  • Barros CS, Franco SJ, Mþller U (2011) Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 3:a005108–a005108

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  • Borza CM, Pozzi A (2012) The role of cell-extracellular matrix interactions in glomerular injury. Exp Cell Res 318:1001–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourrier A, Shkorbatova P, Bonizzato M, Rey E, Barraud Q, Courtine G, Othmen R, REITA V, Bouchiat V, Delacour C (2019) Monolayer graphene coating of intracortical probes for long-lasting neural activity monitoring. Adv Healthc Mater 8:1801331

    Article  Google Scholar 

  • Celio MR, Blumcke I (1994) Perineuronal nets—a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev 19:128–145

    Article  CAS  PubMed  Google Scholar 

  • Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J-H, Kim T-H, El-Said WA, Lee J-H, Yang L, Conley B, Choi J-W, Lee K-B (2020) In situ detection of neurotransmitters from stem cell-derived neural Interface at the single-cell level via graphene-hybrid SERS nanobiosensing. Nano Lett 20:7670–7679

    Article  CAS  PubMed  Google Scholar 

  • Choo S-S, Kang E-S, Song I, Lee D, Choi J-W, Kim T-H (2017) Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors (Basel, Switzerland) 17:861

    Article  Google Scholar 

  • D’Abaco GM, Mattei C, Nasr B, Hudson EJ, Alshawaf AJ, Chana G, Everall IP, Nayagam B, Dottori M, Skafidas E (2018) Graphene foam as a biocompatible scaffold for culturing human neurons. R Soc Open Sci 5:171364

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasari BL, Nouri JM, Brabazon D, Naher S (2017) Graphene and derivatives – synthesis techniques, properties and their energy applications. Energy 140:766–778

    Article  CAS  Google Scholar 

  • Downes A, Mouras R, Elfick A (2010) Optical spectroscopy for noninvasive monitoring of stem cell differentiation. J Biomed Biotechnol 2010:10

    Article  Google Scholar 

  • Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, Chen Z (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32:266–277

    CAS  Google Scholar 

  • Fang Q, Zhang Y, Chen X, Li H, Cheng L, Zhu W, Zhang Z, Tang M, Liu W, Wang H, Wang T, Shen T, Chai R (2020) Three-dimensional graphene enhances neural stem cell proliferation through metabolic regulation. Front Bioeng Biotechnol 7:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Foroutan T, Ahmadi F, Moayer F, Khalvati S (2020) Effects of intraperitoneal injection of magnetic graphene oxide on the improvement of acute liver injury induced by CCl4. Biomater Res 24:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyman TM, Yannas IV, Gibson LJ (2001) Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 46:273–282

    Article  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geckil H, Xu F, Zhang X, Moon S, Demirci U (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond) 5:469–484

    Article  CAS  Google Scholar 

  • Ghasemi Goorbandi R, Mohammadi MR, Malekzadeh K (2020) Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma. Biomater Res 24:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golafshan N, Kharaziha M, Fathi M, Larson BL, Giatsidis G, Masoumi N (2018) Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: alginate fibrous scaffold. RSC Adv 8:6381–6389

    Article  CAS  Google Scholar 

  • González-Mayorga A, Lõpez-Dolado E, Gutiërrez MC, Collazos-Castro JE, Ferrer ML, Del Monte F, Serrano MC (2017) Favorable biological responses of neural cells and tissue interacting with graphene oxide microfibers. ACS Omega 2:8253–8263

    Article  PubMed  PubMed Central  Google Scholar 

  • Good PF, Werner P, Hsu A, Olanow CW, Perl DP (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am J Pathol 149:21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Götz M, Huttner WB (2005) Developmental cell biology: the cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777

    Article  PubMed  Google Scholar 

  • Grawish ME, Grawish LM, Grawish HM, Grawish MM, El-Negoly SA (2020) Challenges of engineering biomimetic dental and paradental tissues. Tissue Eng Regen Med 17:403–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossemy S, Chan PP, Doran PM (2020) Stimulation of cell growth and neurogenesis using protein-functionalized microfibrous scaffolds and fluid flow in bioreactors. Biochem Eng J 159:107602

    Article  CAS  Google Scholar 

  • Guo W, Zhang X, Yu X, Wang S, Qiu J, Tang W, Li L, Liu H, Wang ZL (2016) Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10:5086–5095

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, Liu Y, Li D, Zou J, Sun D, Torre V, Zhang Q, Chai R, Tang M (2021) Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B: Biointerfaces 200:111590

    Article  CAS  PubMed  Google Scholar 

  • Hsiao J-K, Tai M-F, Chu H-H, Chen S-T, Li H, Lai D-M, Hsieh S-T, Wang J-L, Liu H-M (2007) Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 58:717–724

    Article  CAS  PubMed  Google Scholar 

  • Intille SS, Lester J, Sallis JF, Duncan G (2012) New horizons in sensor development. Med Sci Sports Exerc 44:S24–S31

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaafar E, Kashif M (2018) Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO). Mater Sci Forum 917:112–116

    Article  Google Scholar 

  • Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, Parkkinen L, Senior SL, Anwar S, Ryan B (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016–E4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H-J, Jimenez Z, Mukhambetiyar K, Seo M, Choi J-W, Park T-E (2020) Engineering human brain organoids: from basic research to tissue regeneration. Tissue Eng Regen Med 17:747–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Raliya R, Liao P, Biswas P, Fortner JD (2017) Graphene oxides in water: assessing stability as a function of material and natural organic matter properties. Environ Sci Nano 4:1484–1493

    Article  CAS  Google Scholar 

  • Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Ibbs M, Bliźniak R, Łuczewski Ł, Lamperska K (2018) 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 14:910–919

    Google Scholar 

  • Kawai S, Yamazaki M, Shibuya K, Yamazaki M, Fujii E, Nakano K, Suzuki M (2020) Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep 10:1–11

    Article  Google Scholar 

  • Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, HEN R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisën J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  Google Scholar 

  • Kim T-H, Lee K-B, Choi J-W (2013) 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation. Biomaterials 34:8660–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Shah S, Yang L, Yin PT, Hossain MK, Conley B, Choi J-W, Lee K-B (2015a) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9:3780–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Yea C-H, Chueng S-TD, Yin PT-T, Conley B, Dardir K, Pak Y, Jung GY, Choi J-W, Lee K-B (2015b) Large-scale nanoelectrode arrays to monitor the dopaminergic differentiation of human neural stem cells. Adv Mater 27:6356–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SM, Kim J, Noh S, Sohn H, Lee T (2020a) Recent development of aptasensor for influenza virus detection. Biochip J 14:327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-Y, Lim JW, Lim M-C, Song N-E, Woo M-A (2020b) Aptamer-based fluorescent assay for simple and sensitive detection of fipronil in liquid eggs. Biotechnol Bioprocess Eng 25:246–254

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Nör JE (2013) Orosphere assay: a method for propagation of head and neck cancer stem cells. Head Neck 35:1015–1021

    Article  PubMed  Google Scholar 

  • Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang L, Guo Y, Cheng C, Yang L, Jiang L, Yu G, Hu W, Liu Y, Zhu D (2013) Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. J Mater Chem C 1:3104–3109

    Article  CAS  Google Scholar 

  • Liu N, Xiang X, Fu L, Cao Q, Huang R, Wu L (2021) Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens Bioelectron 188:113340

    Article  CAS  PubMed  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv M, Zhang Y, Liang L, Wei M, Hu W, Li X, Huang Q (2012) Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line. Nanoscale 4:3861–3866

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Xiao M, Hao Y, Cheng G (2019) Precisely controllable hybrid graphene scaffold reveals size effects on differentiation of neural progenitor cells in mimicking neural network. Carbon 145:90–99

    Article  CAS  Google Scholar 

  • Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526

    Article  CAS  PubMed  Google Scholar 

  • Marcus M, Skaat H, Alon N, Margel S, Shefi O (2015) NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells. Nanoscale 7:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Miller AE, Hu P, Barker TH (2020) Feeling things out: bidirectional signaling of the cell–ECM Interface, implications in the mechanobiology of cell spreading, migration, proliferation, and differentiation. Adv Healthc Mater 9:1901445

    Article  CAS  Google Scholar 

  • Min K-J, Kim T-H, Choi J-W (2017) Magnetic force-driven graphene patterns to direct synaptogenesis of human neuronal cells. Materials 10:1151

    Article  PubMed Central  Google Scholar 

  • Myung S, Yin PT, Kim C, Park J, Solanki A, Reyes PI, Lu Y, Kim KS, Lee K-B (2012) Label-free polypeptide-based enzyme detection using a graphene-nanoparticle hybrid sensor. Adv Mater (Deerfield Beach, Fla) 24:6081–6087

    Article  CAS  Google Scholar 

  • Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  • Park S-J, Kim S, Kim S-Y, Jeon NL, Song JM, Won C, Min D-H (2017) Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle. ACS Appl Mater Interfaces 9:34634–34640

    Article  CAS  PubMed  Google Scholar 

  • Park D, Kim JH, Kim HJ, Lee D, Lee DS, Yoon DS, Hwang KS (2020) Multiplexed femtomolar detection of Alzheimer’s disease biomarkers in biofluids using a reduced graphene oxide field-effect transistor. Biosens Bioelectron 167:112505

    Article  CAS  PubMed  Google Scholar 

  • Polo Y, Luzuriaga J, Iturri J, Irastorza I, Toca-Herrera JL, Ibarretxe G, Unda F, Sarasua J-R, Pineda JR, Larraóaga A (2021) Nanostructured scaffolds based on bioresorbable polymers and graphene oxide induce the aligned migration and accelerate the neuronal differentiation of neural stem cells. Nanomedicine 31:102314

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Guo W, Zheng S, Fu C, Ma Y, Pan S, Liu Q, Yang X (2019) Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv 9:8315–8325

    Article  CAS  Google Scholar 

  • Ratnam KV, Manjunatha H, Janardan S, Naidu KCB, Ramesh S (2020) Nonenzymatic electrochemical sensor based on metal oxide, MO (M= cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: an abridged review. Sensors Int 1:100047

    Article  Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85:5733–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Losada N, Wendelbob R, Ocaóa MC, Casares AD, Guzman De Villorïa R, Aguirre Gomez JA, Arraez MA, Gonzalez-Alegre P, Medina MA, Arenas E, Narvaez JA (2020) Graphene oxide and reduced derivatives, as powder or film scaffolds, differentially promote dopaminergic neuron differentiation and survival. Front Neurosci 14:570409

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath T, Reddi AH (1981) Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci 78:7599–7603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-González S, Diban N, Bianchi F, Ye H, Urtiaga A (2018) Evidences of the effect of GO and rGO in PCL membranes on the differentiation and maturation of human neural progenitor cells. Macromol Biosci 18:1800195

    Article  Google Scholar 

  • Sethi J, Van Bulck M, Suhail A, Safarzadeh M, Perez-Castillo A, Pan G (2020) A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchim Acta 187:1–10

    Google Scholar 

  • Shah S, Yin PT, Uehara TM, Chueng S-TD, Yang L, Lee K-B (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater (Deerfield Beach, Fla) 26:3673–3680

    Article  CAS  Google Scholar 

  • Sharma R, Asmara TC, Sahoo KR, Grage SL, Zhang R, Sun J, Das S, Ulrich AS, Rusydi A, Aryasomayajula S (2020) Structural and electronic transport properties of fluorographene directly grown on silicates for possible biosensor applications. ACS Appl Nano Mater 3:5399–5409

    Article  CAS  Google Scholar 

  • Shin J-H, Lee M-J, Choi J-H, Song J-A, Kim T-H, Oh B-K (2020) Electrochemical H2O2 biosensor based on horseradish peroxidase encapsulated protein nanoparticles with reduced graphene oxide-modified gold electrode. Nano Converg 7:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smitha PK, Bathula C, Kn C, Das M (2020) Usage of graphene oxide in fluorescence quenching-linked immunosorbent assay for the detection of Cry2Ab protein present in transgenic plants. J Agric Food Chem 68:3656–3662

    Article  CAS  Google Scholar 

  • Solanki A, Chueng S-TD, Yin PT, Kappera R, Chhowalla M, Lee K-B (2013) Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater (Deerfield Beach, Fla) 25:5477–5482

    Article  CAS  Google Scholar 

  • Suhito IR, Angeline N, Choo S-S, Woo HY, Paik T, Lee T, Kim T-H (2018) Nanobiosensing platforms for real-time and non-invasive monitoring of stem cell pluripotency and differentiation. Sensors (Basel, Switzerland) 18:2755

    Article  Google Scholar 

  • Sumisha A, Haribabu K (2020) Nanostructured polypyrrole as cathode catalyst for Fe (III) removal in single chamber microbial fuel cell. Biotechnol Bioprocess Eng 25:78–85

    Article  CAS  Google Scholar 

  • Tasnim N, Thakur V, Chattopadhyay M, Joddar B (2018) The efficacy of graphene foams for culturing mesenchymal stem cells and their differentiation into dopaminergic neurons. J Stem Cells Int 2018:12

    Google Scholar 

  • Tu Q, Pang L, Wang L, Zhang Y, Zhang R, Wang J (2013) Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth. ACS Appl Mater Interfaces 5:13188–13197

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24:4285–4290

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang Z, Chen B, Gu L, Li Y, Yu S (2018) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci 516:332–341

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang H, Mo X, Wang H (2020) Reduced graphene oxide-encapsulated microfiber patterns enable controllable formation of neuronal-like networks. Adv Mater (Deerfield Beach, Fla) 32:2004555

    Article  CAS  Google Scholar 

  • Yang K, Lee J, Lee JS, Kim D, Chang G-E, Seo J, Cheong E, Lee T, Cho S-W (2016) Graphene oxide hierarchical patterns for the derivation of electrophysiologically functional neuron-like cells from human neural stem cells. ACS Appl Mater Interfaces 8:17763–17774

    Article  CAS  PubMed  Google Scholar 

  • Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaoralová D, Hrubý VTZ, Šedajová V, Mach R, Kupka VC, Ugolotti J, Bakandritsos A, Medved’ M, Otyepka M (2020) Tunable synthesis of nitrogen doped graphene from fluorographene under mild conditions. ACS Sustain Chem Eng 8:4764–4772

    Article  Google Scholar 

  • Zhang LI, Poo M-M (2001) Electrical activity and development of neural circuits. Nat Neurosci 4:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Yin L-C, Wang D-W, Li L, Pei S, Gentle IR, Li F, Cheng H-M (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7:5367–5375

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Xie X, Guo Y, Chen P, Ou X, Yu G, Liu M (2013) Fluorographene nanosheets with broad solvent dispersibility and their applications as a modified layer in organic field-effect transistors. Phys Chem Chem Phys 15:20992–21000

    Article  CAS  PubMed  Google Scholar 

  • Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L (2019) Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol 319:112963

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (Grant Nos. NRF-2019R1C1C1007633, NRF-2019M3A9H2031820, NRF-2019R1A4A1028700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hyung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, YW., Lee, KH., Kim, TH. (2022). Graphene-Based Materials for Efficient Neurogenesis. In: Han, DW., Hong, S.W. (eds) Multifaceted Biomedical Applications of Graphene. Advances in Experimental Medicine and Biology, vol 1351. Springer, Singapore. https://doi.org/10.1007/978-981-16-4923-3_3

Download citation

Publish with us

Policies and ethics