Skip to main content

Differential Toxicity of Graphene Family Nanomaterials Concerning Morphology

  • Chapter
  • First Online:
Multifaceted Biomedical Applications of Graphene

Abstract

Graphene family nanomaterials (GFNs) are well-known carbonaceous materials, which find application in several fields like optoelectronics, photocatalysis, nanomedicine, and tissue regeneration. Despite possessing many advantages in biomedical applications, GFNs exhibited toxicity depending on various parameters including dosage, size, exposure time, and kinds of administration. GFNS are majorly classified into nanosheets, quantum dots, nanoplatelets, and nanoribbons based on morphology. Understanding the toxic effects of GFNs would provide new suggestions as to how the materials can be utilized effectively. Hence, we are summarizing here some of the recent findings in cellular and animal level toxicity studies of GFNs on the perspective of their different morphologies. Notwithstanding, we highlight progress, challenges, and new toxicological approaches to ensure biosafety of GFNs for future directions.

Iruthayapandi Selestin Raja and Anara Molkenova equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025

    CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 54:419–431

    CAS  Google Scholar 

  • Amani H, Mostafavi E, Arzaghi H, Davaran S, Akbarzadeh A, Akhavan O, Pazoki-Toroudi H, Webster TJ (2019) Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater Sci Eng 5(1):193–214

    CAS  PubMed  Google Scholar 

  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    CAS  Google Scholar 

  • Chen L, Hernandez Y, Feng X, Mullen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed Engl 51(31):7640–7654

    CAS  PubMed  Google Scholar 

  • Cho YC, Pak PJ, Joo YH, Lee H-S, Chung N (2016) In vitro and in vivo comparison of the immunotoxicity of single- and multi-layered graphene oxides with or without pluronic F-127. Sci Rep 6:38884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z (2014) The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35(19):5041–5048

    CAS  PubMed  Google Scholar 

  • Dervin S, Murphy J, Aviles R, Pillai SC, Garvey M (2018) An in vitro cytotoxicity assessment of graphene nanosheets on alveolar cells. Appl Surf Sci 434:1274–1284

    CAS  Google Scholar 

  • Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM (2012) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22(18):8764–8766

    CAS  Google Scholar 

  • Dong Y, Pang H, Ren S, Chen C, Chi Y, Yu T (2013) Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon 64:245–251

    CAS  Google Scholar 

  • Fatima S, Ali SI, Iqbal MZ, Rizwan S (2017) The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO3/graphene nanoplatelet (GNP) nanohybrids. RSC Adv 7(57):35928–35937

    CAS  Google Scholar 

  • Fernandes AL, Josende ME, Nascimento JP, Santos AP, Sahoo SK, da Silva FMR, Romano LA, Furtado CA, Wasielesky W, Monserrat JM, Ventura-Lima J (2017) Exposure to few-layer graphene through diet induces oxidative stress and histological changes in the marine shrimp Litopenaeus vannamei. Toxicol Res 6(2):205–214

    CAS  Google Scholar 

  • Filip J, Tkac J (2014) Is graphene worth using in biofuel cells? Electrochim Acta 136:340–354

    CAS  Google Scholar 

  • Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    CAS  PubMed  Google Scholar 

  • Gies V, Zou S (2018) Systematic toxicity investigation of graphene oxide: evaluation of assay selection, cell type, exposure period and flake size. Toxicol Res 7(1):93–101

    CAS  Google Scholar 

  • Goh MS, Pumera M (2010) Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts. Electrochem Commun 12(10):1375–1377

    CAS  Google Scholar 

  • Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22(1):105–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han DW, Atabaev TS (2020) The two faces of nanomaterials: toxicity and bioactivity. MDPI, Basel. https://doi.org/10.3390/books978-3-03928-984-4

    Book  Google Scholar 

  • Han DW, Chrzanowski W (2018) Frontiers in toxicity and functionalization of nanomaterials. MDPI, Basel. https://doi.org/10.3390/books978-3-03842-735-3

    Book  Google Scholar 

  • Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4(4):2059–2069

    CAS  PubMed  Google Scholar 

  • Ivask A, Voelcker NH, Seabrook SA, Hor M, Kirby JK, Fenech M, Davis TP, Ke PC (2015) DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol 28(5):1023–1035

    CAS  PubMed  Google Scholar 

  • Jiang D, Chen Y, Li N, Li W, Wang Z, Zhu J, Zhang H, Liu B, Xu S (2015) Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One 10(12):e0144906–e0144906

    PubMed  PubMed Central  Google Scholar 

  • Katsumiti A, Tomovska R, Cajaraville MP (2017) Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquat Toxicol 188:138–147

    CAS  PubMed  Google Scholar 

  • Kenry LWC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155:236–250

    CAS  PubMed  Google Scholar 

  • Khim Chng EL, Chua CK, Pumera M (2014) Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale 6(18):10792–10797

    CAS  Google Scholar 

  • Kim J, Suh JS (2014) Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. ACS Nano 8(5):4190–4196

    CAS  PubMed  Google Scholar 

  • Kim JK, Shin JH, Lee JS, Hwang JH, Lee JH, Baek JE, Kim TG, Kim BW, Kim JS, Lee GH, Ahn K, Han SG, Bello D, Yu IJ (2016) 28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats. Nanotoxicology 10(7):891–901

    CAS  PubMed  Google Scholar 

  • Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    CAS  PubMed  Google Scholar 

  • Lammel T, Boisseaux P, Fernandez-Cruz ML, Navas JM (2013) Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol 10:27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  PubMed  Google Scholar 

  • Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341

    CAS  PubMed  Google Scholar 

  • Lee JH, Shin YC, Jin OS, Lee EJ, Han DW, Kang SH, Hong SW, Ahn JY, Kim SH (2012) Cytotoxicity evaluations of pristine graphene and carbon nanotubes in fibroblastic cells. J Kor Phys Soc 61(6):873–877

    CAS  Google Scholar 

  • Lee E, Ryu J, Jang J (2013) Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based DSSCs. Chem Commun 49(85):9995–9997

    CAS  Google Scholar 

  • Liang S, Xu S, Zhang D, He J, Chu M (2015) Reproductive toxicity of nanoscale graphene oxide in male mice. Nanotoxicology 9(1):92–105

    CAS  PubMed  Google Scholar 

  • Liu R, Wu D, Feng X, Mullen K (2011) Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133(39):15221–15223

    CAS  PubMed  Google Scholar 

  • Long D, Li W, Qiao W, Miyawaki J, Yoon S-H, Mochida I, Ling L (2011) Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chem Commun 47(33):9429–9431

    CAS  Google Scholar 

  • Lu J, Yeo PS, Gan CK, Wu P, Loh KP (2011) Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol 6(4):247–252

    CAS  PubMed  Google Scholar 

  • Mao L, Hu M, Pan B, Xie Y, Petersen EJ (2016) Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol 13(1):7

    PubMed  PubMed Central  Google Scholar 

  • Mullick Chowdhury S, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B (2013) Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34(1):283–293

    CAS  PubMed  Google Scholar 

  • Mullick Chowdhury S, Dasgupta S, McElroy AE, Sitharaman B (2014) Structural disruption increases toxicity of graphene nanoribbons. J Appl Toxicol 34(11):1235–1246

    CAS  PubMed  Google Scholar 

  • Neubeck S, Ponomarenko LA, Freitag F, Giesbers AJM, Zeitler U, Morozov SV, Blake P, Geim AK, Novoselov KS (2010) From one electron to one hole: quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching. Small 6(14):1469–1473

    CAS  PubMed  Google Scholar 

  • Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee Y-k (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7(8):6858–6867

    CAS  PubMed  Google Scholar 

  • Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L (2016) Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 13(1):57

    PubMed  PubMed Central  Google Scholar 

  • Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    PubMed  Google Scholar 

  • Park E-J, Lee G-H, Han BS, Lee B-S, Lee S, Cho M-H, Kim J-H, Kim D-W (2015) Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol 89(9):1557–1568

    CAS  PubMed  Google Scholar 

  • Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic dirac billiard in graphene quantum dots. Science 320(5874):356–358

    CAS  PubMed  Google Scholar 

  • Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW (2021) A critical review on genotoxicity potential of low dimensional nanomaterials. J Hazard Mater 409:124915

    CAS  PubMed  Google Scholar 

  • Rauti R, Lozano N, León V, Scaini D, Musto M, Rago I, Ulloa Severino FP, Fabbro A, Casalis L, Vázquez E, Kostarelos K, Prato M, Ballerini L (2016) Graphene oxide nanosheets reshape synaptic function in cultured brain networks. ACS Nano 10(4):4459–4471

    CAS  PubMed  Google Scholar 

  • Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8(3):235–242

    CAS  PubMed  Google Scholar 

  • Russier J, Leon V, Orecchioni M, Hirata E, Virdis P, Fozza C, Sgarrella F, Cuniberti G, Prato M, Vazquez E, Bianco A, Delogu LG (2017) Few-layer graphene kills selectively tumor cells from myelomonocytic leukemia patients. Angew Chem Int Ed Engl 56(11):3014–3019

    CAS  PubMed  Google Scholar 

  • Saeed RM, Schlegel JP, Castano C, Sawafta R (2018) Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets. J Energy Storage 15:91–102

    Google Scholar 

  • Sasidharan A, Swaroop S, Chandran P, Nair S, Koyakutty M (2016) Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells. Nanomedicine 12(5):1347–1355

    CAS  PubMed  Google Scholar 

  • Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6(1):736–746

    CAS  PubMed  Google Scholar 

  • Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168

    CAS  PubMed  Google Scholar 

  • Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    CAS  Google Scholar 

  • Shin YC, Lee JH, Lee IS, Han DW (2018) Chapter 12 Biosafety of carbon-based nanoparticles and nanocomposites. Part V Biosafety and clinical translation of nanobiomaterials. In: Wang X, Ramanlingan M, Kong X, Zhao L (eds) Nanobiomaterials: classification, fabrication and biomedical applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 431–458. https://doi.org/10.1002/9783527698646.ch18

    Chapter  Google Scholar 

  • Shinde DB, Pillai VK (2012) Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry 18(39):12522–12528

    CAS  PubMed  Google Scholar 

  • Tabish TA, Pranjol MZI, Hayat H, Rahat AAM, Abdullah TM, Whatmore JL, Zhang S (2017) In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology 28(50):504001

    PubMed  Google Scholar 

  • Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Google Scholar 

  • Tian X, Xiao B-B, Wu A, Yu L, Zhou J, Wang Y, Wang N, Guan H, Shang Z-F (2016) Hydroxylated-graphene quantum dots induce cells senescence in both p53-dependent and -independent manner. Toxicol Res 5(6):1639–1648

    CAS  Google Scholar 

  • Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195

    CAS  Google Scholar 

  • Wang T, Zhu S, Jiang X (2015) Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res 4(4):885–894

    CAS  Google Scholar 

  • Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J (2013) Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater 2(12):1613–1619

    CAS  PubMed  Google Scholar 

  • Wu W, Yan L, Wu Q, Li Y, Li Q, Chen S, Yang Y, Gu Z, Xu H, Yin ZQ (2016) Evaluation of the toxicity of graphene oxide exposure to the eye. Nanotoxicology 10(9):1329–1340

    CAS  PubMed  Google Scholar 

  • Xu S, Zhang Z, Chu M (2015) Long-term toxicity of reduced graphene oxide nanosheets: effects on female mouse reproductive ability and offspring development. Biomaterials 54:188–200

    CAS  PubMed  Google Scholar 

  • Xue Q, Huang H, Wang L, Chen Z, Wu M, Li Z, Pan D (2013) Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale 5(24):12098–12103

    CAS  PubMed  Google Scholar 

  • Yadav MD, Dasgupta K, Kushwaha A, Srivastava AP, Patwardhan AW, Srivastava D, Joshi JB (2017) Few layered graphene by floating catalyst chemical vapour deposition and its extraordinary H2O2 sensing property. Mater Lett 199:180–183

    CAS  Google Scholar 

  • Yan X, Cui X, Li B, L-s L (2010) Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett 10(5):1869–1873

    CAS  PubMed  Google Scholar 

  • Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467

    CAS  Google Scholar 

  • Zhang D, Zhang Z, Liu Y, Chu M, Yang C, Li W, Shao Y, Yue Y, Xu R (2015) The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials 68:100–113

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Science (NRF-2021R1A2C2006013) and by Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) (No. 20014399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raja, I.S. et al. (2022). Differential Toxicity of Graphene Family Nanomaterials Concerning Morphology. In: Han, DW., Hong, S.W. (eds) Multifaceted Biomedical Applications of Graphene. Advances in Experimental Medicine and Biology, vol 1351. Springer, Singapore. https://doi.org/10.1007/978-981-16-4923-3_2

Download citation

Publish with us

Policies and ethics