Skip to main content

UV Stress Responses in Cyanobacteria

  • Chapter
  • First Online:
Ecophysiology and Biochemistry of Cyanobacteria

Abstract

Cyanobacteria are the oldest group of prokaryotes with oxygen-evolving photosynthesis. They are supposed to have evolved in an atmosphere with little or no oxygen and therefore no protecting stratospheric ozone layer. Since cyanobacteria have to utilize sunlight for photosynthesis, they are simultaneously exposed to deleterious solar UV radiation. In order to survive, they had to develop countermeasures. One strategy is fast reproduction in order to make up for losses due to radiation damage. Another mechanism is mat and crust formation, which protects the organisms in lower levels while sacrificing the ones in the top layer. Vertical migration in the water column using changing buoyancy helps to bring the organisms out of the danger zone. Likewise, gliding cyanobacteria have been found to move to a position deeper in the water to avoid excessive UV exposure. Efficient repair mechanisms have been developed to replace damaged proteins in the photosynthetic apparatus and to repair damage in the cellular DNA. Many cyanobacteria synthesize UV-absorbing pigments such as mycosporine-like amino acids and scytonemin, deposited in the outer cell layers or extracellularly, which absorb UV photons before they can damage vital biomolecules within the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agel G, Nultsch W, Rhiel E (1987) Photoinhibition and its wavelength dependence in the cyanobacterium Anabaena variabilis. Arch Microbiol 147:370–374

    Article  CAS  Google Scholar 

  • Al-Otaibi N, Huete-Stauffer TM, Calleja ML, Irigoien X, Morán XAG (2020) Seasonal variability and vertical distribution of autotrophic and heterotrophic picoplankton in the Central Red Sea. PeerJ 8:e8612

    Article  Google Scholar 

  • Aphalo PJ (2017) Quantification of UV radiation. In: Jordan BR (ed) UV-B radiation and plant life: molecular biology to ecology. CAB International, Boston, MA

    Google Scholar 

  • Aráoz García LR (1998) Tolerance mechanisms against ultraviolet-B radiation in phytoplankton organisms. Dissertation, Friedrich-Alexander University Erlangen-Nürnberg, Germany

    Google Scholar 

  • Aráoz R, Häder D-P (1999a) Enzymatic antioxidant activity in two cyanobacteria species exposed to solar radiation. Recent Res Dev Photochem Photobiol 3:123–132

    Google Scholar 

  • Aráoz R, Häder D-P (1999b) Phycoerythrin synthesis is induced by solar UV-B in the cyanobacterium Nostoc. Plant Physiol Biochem 37:223–229

    Article  Google Scholar 

  • Araoz R, Lebert M, Häder D-P (1998) Translation activity under ultraviolet radiation and temperature stress in the cyanobacterium Nostoc sp. J Photochem Photobiol B Biol 47:115–120

    Article  CAS  Google Scholar 

  • Bais AF, Lucas RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL et al (2018) Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 17:127–179

    Article  CAS  Google Scholar 

  • Balskus EP, Walsh CT (2009) An enzymatic cyclopentyl [b] indole formation involved in scytonemin biosynthesis. J Am Chem Soc 131:14648–14649

    Article  CAS  Google Scholar 

  • Banerjee M, Sinha RP, Häder D-P (1998) Biochemical and spectroscopic changes in phycobiliproteins of the cyanobacterium, Aulosira fertilissima, induced by UV-B radiation. Acta Protozool 37:145–148

    CAS  Google Scholar 

  • Bergi J, Trivedi R (2020) Bioremediation of saline soil by cyanobacteria. Microbial bioremediation & biodegradation. Springer, New York

    Google Scholar 

  • Blakefield MK, Harris DO (1994) Delay of cell differentiation in Anabaena aequalis caused by UV-B radiation and the role of photoreactivation and excision repair. Photochem Photobiol 59:204–208

    Article  CAS  Google Scholar 

  • Blumthaler M, Ambach W, Ellinger R (1997) Increase of solar UV radiation with altitude. J Photochem Photobiol B Biol 39:130–134

    Article  CAS  Google Scholar 

  • Böhmer S, Köninger K, Gómez-Baraibar Á, Bojarra S, Mügge C, Schmidt S, Nowaczyk MM, Kourist R (2017) Enzymatic oxyfunctionalization driven by photosynthetic water-splitting in the cyanobacterium Synechocystis sp. PCC 6803. Catalysts 7:240

    Article  Google Scholar 

  • Brash DE, Seidman MM (2020) Defective post-replication repair of UV photoproducts in melanoma: a mutator phenotype. Mol Oncol 14:5–7

    Article  Google Scholar 

  • Campbell D, Eriksson MJ, Öquist G, Gustafsson P, Clarke AK (1998) The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc Natl Acad Sci U S A 95:364–369

    Article  CAS  Google Scholar 

  • Casey JR, Björkman KM, Ferrón S, Karl DM (2019) Size dependence of metabolism within marine picoplankton populations. Limnol Oceanogr 64:1819–1827

    Article  Google Scholar 

  • Chen Z, Li X, Tan X, Zhang Y, Wang B (2020) Recent advances in biological functions of thick pili in the cyanobacterium Synechocystis sp. PCC 6803. Front Plant Sci 11:241

    Article  CAS  Google Scholar 

  • Cheng Y-I, Chou L, Chiu Y-F, Hsueh H-T, Kuo C-H, Chu H-A (2020) Comparative genomic analysis of a novel strain of Taiwan hot-spring cyanobacterium Thermosynechococcus sp. CL-1. Front Microbiol 11:82

    Article  Google Scholar 

  • Cihlář J, Füssy Z, Oborník M (2019) Evolution of tetrapyrrole pathway in eukaryotic phototrophs, Advances in botanical research. Elsevier, Amsterdam

    Book  Google Scholar 

  • Conde FR, Churio MS, Previtali CM (2007) Experimental study of the excited-state properties and photostability of the mycosporine-like amino acid palythine in aqueous solution. Photochem Photobiol Sci 6:669–674

    Article  CAS  Google Scholar 

  • Cordero RR, Seckmeyer G, Damiani A, Riechelmann S, Rayas J, Labbe F, Laroze D (2014) The world’s highest levels of surface UV. Photochem Photobiol Sci 13:70–81

    Article  CAS  Google Scholar 

  • Cordero R, Damiani A, Seckmeyer G, Jorquera J, Caballero M, Rowe P, Ferrer J, Mubarak R, Carrasco J, Rondanelli R (2016) The solar spectrum in the Atacama Desert. Sci Rep 6:22457

    Article  CAS  Google Scholar 

  • Doetsch PW, Zastawny TH, Martin AM, Dizdaroglu M (1995) Monomeric base damage products from adenine, guanine, and thymine induced by exposure of DNA to ultraviolet radiation. Biochemistry (USA) 34:737–742

    Article  CAS  Google Scholar 

  • Donkor VA, Häder D-P (1995) Protective strategies of several cyanobacteria against solar radiation. J Plant Physiol 145:750–755

    Article  CAS  Google Scholar 

  • Donkor VA, Häder D-P (1996) Effects of ultraviolet irradiation on photosynthetic pigments in some filamentous cyanobacteria. Aquat Microbial Ecol 11:143–149

    Article  Google Scholar 

  • Donkor VA, Häder D-P (1997) Ultraviolet radiation effects on pigmentation in the cyanobacterium Phormidium uncinatum. Acta Protozool 36:49–55

    CAS  Google Scholar 

  • Dyer SW, Needoba JA (2020) Use of high-resolution pressure nephelometry to measure gas vesicle collapse as a means of determining growth and turgor changes in planktonic cyanobacteria. Appl Environ Microbiol 86(2):e01790–e01719

    Article  CAS  Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338

    Article  Google Scholar 

  • Eker A, Kooiman P, Hessels J, Yasui A (1990) DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem 265:8009–8015

    Article  CAS  Google Scholar 

  • Feister U, Cabrol N, Häder D-P (2015) UV irradiance enhancements by scattering of solar radiation from clouds. Atmosphere 5:1211–1228

    Article  Google Scholar 

  • Fourçans A, Solé A, Diestra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377

    Article  Google Scholar 

  • Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  • Guillerme J-B, Couteau C, Coiffard L (2017) Applications for marine resources in cosmetics. Cosmetics 4:35

    Article  Google Scholar 

  • Häder D-P (1974) Participation of two photosystems in the photo-phobotaxis of Phormidium uncinatum. Arch Microbiol 96:255–266

    Article  Google Scholar 

  • Häder D-P (1978) Evidence of electrical potential changes in photophobically reacting blue-green algae. Arch Microbiol 118:115–119

    Article  Google Scholar 

  • Häder D-P (1984) Wie orienteren sich Cyanobakterien im Licht. Biologie in unserer Zeit 14:78–83

    Article  Google Scholar 

  • Häder D-P (1993a) Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. In: Tevini M (ed) UV-B radiation and ozone depletion. Effects on humans, animals, plants, microorganisms, and materials. Lewis Publ., Boca Raton, FL

    Google Scholar 

  • Häder D-P (1993b) Risks of enhanced solar ultraviolet radiation for aquatic ecosystems. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress Ltd., Bristol

    Google Scholar 

  • Häder D-P, Burkart U (1978) Mathematical model for photophobic accumulations of blue-green algae in light traps. J Math Biol 5:293–304

    Article  Google Scholar 

  • Häder DP, Cabrol NA (2020) Monitoring of solar irradiance in the high Andes. Photochem Photobiol 96(5):1133–1139

    Article  Google Scholar 

  • Häder D-P, Gao K (2018) Phytoplankton responses to ocean climate change drivers. In: Aquatic ecosystems in a changing climate, vol 62. CRC Press, Boca Raton, FL

    Chapter  Google Scholar 

  • Häder D-P, Häder M (1990) Effects of solar radiation on motility, photomovements and pigmentation in two strains of the cyanobacterium, Phormidium uncinatum. Acta Protozool 29:291–303

    Google Scholar 

  • Häder D-P, Watanabe M, Furuya M (1986) Inhibition of motility in the cyanobacterium, Phormidium uncinatum, by solar and monochromatic UV irradiation. Plant Cell Physiol 27:887–894

    Article  Google Scholar 

  • Häder D-P, Lebert M, Schuster M, del Ciampo L, Helbling EW, McKenzie R (2007) ELDONET - a decade of monitoring solar radiation on five continents. Photochem Photobiol 83:1348–1357

    Article  Google Scholar 

  • Hall DB, Holmlin RE, Barton JK (1996) Oxidative DNA damage through long-range electron transfer. Nature 382:731–735

    Article  CAS  Google Scholar 

  • He YY, Häder D-P (2002a) Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. J Photochem Photobiol B Biol 66:73–80

    Article  CAS  Google Scholar 

  • He YY, Häder D-P (2002b) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736

    Article  CAS  Google Scholar 

  • He X, Wert EC (2016) Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis. Water Res 101:10–16

    Article  CAS  Google Scholar 

  • Hoffmann L, Hoppe C, Müller R, Dutton G, Gille J, Griessbach S, Jones A, Meyer C, Spang R, Volk C (2014) Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies. Atmos Chem Phys 14:12479–12497

    Article  Google Scholar 

  • Hoiczyk E (2000) Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174:11–17

    Article  CAS  Google Scholar 

  • Ikeuchi M, Ishizuka T (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 7:1159–1167

    Article  CAS  Google Scholar 

  • Jaiswal A, Koli DK, Kumar A, Kumar S, Sagar S (2018) Pigments analysis of cyanobacterial strains. Int J Chem Stud 6:1248–1251

    Google Scholar 

  • Janasch M, Asplund-Samuelsson J, Steuer R, Hudson EP (2019) Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. J Exp Bot 70:973–983

    CAS  Google Scholar 

  • Jans J, Schul W, Sert Y-G, Rijksen Y, Rebel H, Eker AP, Nakajima S, van Steeg H, de Gruijl FR, Yasui A (2005) Powerful skin cancer protection by a CPD-photolyase transgene. Curr Biol 15:105–115

    Article  CAS  Google Scholar 

  • Jimel M (2020) Algal and cyanobacterial adaptations to low temperature and desiccation. Bachelor, Karlova

    Google Scholar 

  • Kabirnataj S, Nematzadeh GA, Talebi AF, Tabatabaei M, Singh P (2018) Neowestiellopsis gen. nov, a new genus of true branched cyanobacteria with the description of Neowestiellopsis persica sp. nov. and Neowestiellopsis bilateralis sp. nov., isolated from Iran. Plant Syst Evol 304:501–510

    Google Scholar 

  • Kai W, Lan SS (2020) Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean. Sci Rep 10:1142

    Article  Google Scholar 

  • Kavakli IH, Ozturk N, Gul S (2019) DNA repair by photolyases, Advances in protein chemistry and structural biology. Elsevier, Amsterdam

    Book  Google Scholar 

  • Khaing EP, Zhong V, Eaton-Rye JJ (2019) Impairment of photosystem II assembly and acceptor side electron transfer following mutation of Thr243 and Lys264 of D2 in cyanobacteria. Photosynth Hydrogen Energy Res Sustain 46

    Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  Google Scholar 

  • Kumar A, Sinha RP, Häder D-P (1996) Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola. J Plant Physiol 148:86–91

    Article  CAS  Google Scholar 

  • Kumar A, Kirti A, Rajaram H (2018) Regulation of multiple abiotic stress tolerance by LexA in the cyanobacterium Anabaena sp. strain PCC7120. Biochim Biophys Acta Gene Regul Mech 1861:864–877

    Article  CAS  Google Scholar 

  • Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta Bioenergetics 1857:247–255

    Article  CAS  Google Scholar 

  • Lee J, Min DB (2010) Analysis of volatile compounds from chlorophyll photosensitized linoleic acid by headspace solid-phase microextraction (HS-SPME). Food Sci Biotechnol 19:611–616

    Article  CAS  Google Scholar 

  • Lesser MP (2008) Effects of ultraviolet radiation on productivity and nitrogen fixation in the cyanobacterium, Anabaena sp. (Newton’s strain). Hydrobiologia 598:1–9

    Article  CAS  Google Scholar 

  • Lichtenberg M, Cartaxana P, Kühl M (2020) Vertical migration optimizes photosynthetic efficiency of motile cyanobacteria in a coastal microbial mat. Front Mar Sci 7:359

    Article  Google Scholar 

  • Linacre L, Durazo R, Camacho-Ibar V, Selph K, Lara-Lara J, Mirabal-Gómez U, Bazán-Guzmán C, Lago-Lestón A, Fernández-Martín E, Sidón-Ceseña K (2019) Picoplankton carbon biomass assessments and distribution of Prochlorococcus ecotypes linked to Loop Current Eddies during summer in the southern Gulf of Mexico. J Geophys Res Oceans 124(11):8342–8359

    Article  Google Scholar 

  • Lv W, Zhang Z, Zhang KY, Yang H, Liu S, Xu A, Guo S, Zhao Q, Huang W (2016) A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia. Angew Chem Int Ed 55:9947–9951

    Article  CAS  Google Scholar 

  • Menon SN, Varuni P, Menon GI (2020) Information integration and collective motility in phototactic cyanobacteria. PLoS Comput Biol 16:e1007807

    Article  Google Scholar 

  • Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer-Hayn S (2016) Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure. Geophys Res Lett 43:2919–2927

    Article  CAS  Google Scholar 

  • Miao D, Ding W-L, Zhao B-Q, Lu L, Xu Q-Z, Scheer H, Zhao K-H (2016) Adapting photosynthesis to the near-infrared: non-covalent binding of phycocyanobilin provides an extreme spectral red-shift to phycobilisome core-membrane linker from Synechococcus sp. PCC7335. Biochim Biophys Acta Bioenergetics 1857:688–694

    Article  CAS  Google Scholar 

  • Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand C, Fermani S, Trost P (2013) Redox regulation of the Calvin–Benson cycle: something old, something new. Front Plant Sci 4:470

    Article  Google Scholar 

  • Miyata M, Robinson RC, Uyeda TQ, Fukumori Y, Si F, Haruta S, Homma M, Inaba K, Ito M, Kaito C (2020) Tree of motility–a proposed history of motility systems in the tree of life. Genes Cells 25:6–21

    Article  CAS  Google Scholar 

  • Mloszewska AM, Cole DB, Planavsky NJ, Kappler A, Whitford DS, Owttrim GW, Konhauser KO (2018) UV radiation limited the expansion of cyanobacteria in early marine photic environments. Nat Commun 9:1–8

    Article  CAS  Google Scholar 

  • Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  CAS  Google Scholar 

  • Monchamp M-E, Spaak P, Pomati F (2019) Long term diversity and distribution of non-photosynthetic cyanobacteria in peri-alpine lakes. Front Microbiol 9:3344

    Article  Google Scholar 

  • Nadeau T-L, Howard-Williams C, Castenholz RW (1999) Effects of solar UV and visible irradiance on photosynthesis and vertical migration of Oscillatoria sp.(Cyanobacteria) in an Antarctic microbial mat. Aquat Microb Ecol 20:231–243

    Article  Google Scholar 

  • Nultsch W, Häder D-P (1970) Bestimmungen der photo-phobotaktischen Unterschiedsschwelle bei Phormidium uncinatum. Berichte der Deutschen Botanischen Gesellschaft 83:185–192

    Google Scholar 

  • Nultsch W, Häder D-P (1974) Über die Rolle der beiden Photosysteme in der Photo-phobotaxis von Phormidium uncinatum. Berichte der Deutschen Botanischen Gesellschaft 87:83–92

    Google Scholar 

  • Nultsch W, Schuchart H (1985) A model of the phototactic reaction chain of the cyanobacterium Anabaena variabilis. Arch Microbiol 142:180–184

    Article  CAS  Google Scholar 

  • Nultsch W, Wenderoth K (1983) Partial irradiation experiments with Anabaena variabilis (Kütz). Z Pflanzenphysiol 111:1–7

    Article  Google Scholar 

  • Nultsch W, Schuchart H, Höhl M (1979) Investigations on the phototactic orientation of Anabaena variabilis. Arch Microbiol 122:85–91

    Article  CAS  Google Scholar 

  • Pankratov T, Kachalkin A, Korchikov E, Dobrovol’skaya T (2017) Microbial communities of lichens. Microbiology 86:293–309

    Article  CAS  Google Scholar 

  • Patel HM, Rastogi RP, Trivedi U, Madamwar D (2019) Cyanobacterial diversity in mat sample obtained from hypersaline desert, Rann of Kachchh. 3 Biotech 9:304

    Article  Google Scholar 

  • Pathak J, Ahmed H, Sinha RP (2017a) Metabolomic profiling of cyanobacterial UV-protective compounds. Curr Metabolomics 5:138–163

    Article  CAS  Google Scholar 

  • Pathak J, Sonker AS, Richa, Rajneesh R, Kannaujiya VK, Singh V, Ahmed H, Sinha RP (2017b) Screening and partial purification of photoprotective pigment scytonemin from cyanobacterial crusts dwelling on the historical monuments in and around Varanasi, India. Microbiol Res 8(1):4–12

    Article  CAS  Google Scholar 

  • Pathak J, Häder D-P, Sinha RP (2018) Impacts of ultraviolet radiation on certain physiological and biochemical processes in cyanobacteria inhabiting diverse habitats. Environ Exp Bot 161:375–387

    Google Scholar 

  • Pathak J, Ahmed H, Singh PR, Singh SP, Häder D-P, Sinha RP (2019a) Mechanisms of photoprotection in cyanobacteria, Cyanobacteria. Elsevier, Amsterdam

    Book  Google Scholar 

  • Pathak J, Singh PR, Häder DP, Sinha RP (2019b) UV-induced DNA damage and repair: a cyanobacterial perspective. Plant Gene 19:100194

    Article  CAS  Google Scholar 

  • Pospíšil P, Prasad A (2014) Formation of singlet oxygen and protection against its oxidative damage in photosystem II under abiotic stress. J Photochem Photobiol B Biol 137:39–48

    Article  Google Scholar 

  • Puente-Sánchez F, Arce-Rodríguez A, Oggerin M, García-Villadangos M, Moreno-Paz M, Blanco Y, Rodríguez N, Bird L, Lincoln SA, Tornos F (2018) Viable cyanobacteria in the deep continental subsurface. Proc Natl Acad Sci U S A 115:10702–10707

    Article  Google Scholar 

  • Qiu Y, Tian S, Gu L, Hildreth M, Zhou R (2019) Identification of surface polysaccharides in akinetes, heterocysts and vegetative cells of Anabaena cylindrica using fluorescein-labeled lectins. Arch Microbiol 201:17–25

    Article  CAS  Google Scholar 

  • Radyukina N, Mikheeva L, Karbysheva E (2019) Low molecular weight antioxidants in cyanobacteria and plant cells. Biol Bull Rev 9:520–531

    Article  Google Scholar 

  • Rai AN (2018) CRC handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Rajneesh, Chatterjee A, Pathak J, Ahmed H, Singh V, Singh DK, Pandey A, Singh SP, Richa, Häder D-P, Sinha RP (2018) Ultraviolet radiation-induced DNA damage and mechanisms of repair in cyanobacteria: an overview. In: Sinha RP, Shrivastava UP (eds) Biotechnology in agriculture, industry and medicine. Trends in life science research. Nova Biomedical, New York

    Google Scholar 

  • Rastogi RP (2010) UV-B-induced DNA damage and repair in cyanobacteria. PhD, Banaras Hindu University

    Google Scholar 

  • Rastogi RP, Kumar A, Tyagi MB, Sinha RP (2010a) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980

    Article  Google Scholar 

  • Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010b) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607

    Article  CAS  Google Scholar 

  • Rastogi RP, Singh SP, Häder D-P, Sinha RP (2011) Ultraviolet-B-induced DNA damage and photorepair in the cyanobacterium Anabaena variabilis PCC 7937. Environ Exp Bot 74:280–288

    Article  CAS  Google Scholar 

  • Rastogi RP, Kumari S, Richa, Han T, Sinha RP (2012) Molecular characterization of hot spring cyanobacteria and evaluation of their photoprotective compounds. Can J Microbiol 58:719–727

    Article  CAS  Google Scholar 

  • Rastogi RP, Incharoensakdi A, Madamwar D (2014a) Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation. J Plant Physiol 171:1545–1553

    Article  CAS  Google Scholar 

  • Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim Y-J, Rhee J-S, Choi E-M, Brown MT, Häder D-P (2014b) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B Biol 141:154–169

    Article  CAS  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D (2014c) The high-energy radiation protectant extracellular sheath pigment scytonemin and its reduced counterpart in the cyanobacterium Scytonema sp. R77DM. Bioresour Technol 171:396–400

    Article  CAS  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D (2015) Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol 91(4):837–844

    Article  CAS  Google Scholar 

  • Rastogi RP, Sonani RR, Madamwar D, Incharoensakdi A (2016) Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res 16:110–118

    Article  Google Scholar 

  • Rastogi RP, Madamwar D, Nakamoto H, Incharoensakdi A (2020) Resilience and self-regulation processes of microalgae under UV radiation stress. J Photochem Photobiol C Photochem Rev 43:100322

    Article  CAS  Google Scholar 

  • Rexroth S, Nowaczyk MM, Rögner M (2017) Cyanobacterial photosynthesis: the light reactions, Modern topics in the phototrophic prokaryotes. Springer, New York

    Google Scholar 

  • Richa, Sinha RP (2013) Biomedical applications of mycosporine-like amino acids. In: Kim SK (ed) Marine microbiology, bioactive compounds and biotechnological applications. Wiley-VCH Publishers, Germany

    Google Scholar 

  • Richa, Sinha RP, Häder D-P (2015) Physiological aspects of UV-excitation of DNA. In: Barbatto M, Borin AC, Ullrich S (eds) Topics in current chemistry: photoinduced phenomena in nucleic acids II: DNA fragments and phenomenological aspects. Springer, Berlin

    Google Scholar 

  • Sánchez-Baracaldo P, Cardona T (2020) On the origin of oxygenic photosynthesis and cyanobacteria. New Phytol 225:1440–1446

    Article  Google Scholar 

  • Sato M, Omori K, Datta T, Amano Y, Machida M (2017) Influence of extracellular polysaccharides and calcium ion on colony formation of unicellular Microcystis aeruginosa. Environ Eng Sci 34:149–157

    Article  CAS  Google Scholar 

  • Schäfer L, Vioque A, Sandmann G (2005) Functional in situ evaluation of photosynthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis PCC6803. J Photochem Photobiol B Biol 78:195–201

    Article  Google Scholar 

  • Schnell JL, Prather MJ, Josse B, Naik V, Horowitz LW, Zeng G, Shindell DT, Faluvegi G (2016) Effect of climate change on surface ozone over North America, Europe, and East Asia. Geophys Res Lett 43:3509–3518

    Article  CAS  Google Scholar 

  • Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N (2013) Potential applications of antioxidants–a review. J Pharm Res 7:828–835

    CAS  Google Scholar 

  • Singh K (2017) Taxonomy and morphology of cyanobacteria the genus Hapalosiphon (Stigonematales). J Nat Resour Dev 12:5–10

    Google Scholar 

  • Singh H (2018) Desiccation and radiation stress tolerance in cyanobacteria. J Basic Microbiol 58:813–826

    Article  CAS  Google Scholar 

  • Sinha RP (2017) Role of photosynthetically active radiation and dark conditions on the repair of ultraviolet-B radiation-induced damages in the cyanobacterium Nostoc sp. strain HKAR-2. Focus Med Sci J 3

    Google Scholar 

  • Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  CAS  Google Scholar 

  • Sinha RP, Kumar HD, Kumar A, Häder D-P (1995a) Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozool 34:187–192

    CAS  Google Scholar 

  • Sinha RP, Lebert M, Kumar A, Kumar HD, Häder D-P (1995b) Disintegration of phycobilisomes in a rice field cyanobacterium Nostoc sp. following UV irradiation. Biochem Mol Biol Int 37:697–706

    CAS  Google Scholar 

  • Sinha RP, Lebert M, Kumar A, Kumar HD, Häder D-P (1995c) Spectroscopic and biochemical analyses of UV effects on phycobiliproteins of Anabaena sp. and Nostoc carmium. Bot Acta 108:87–92

    Article  CAS  Google Scholar 

  • Sinha RP, Krywult M, Häder D-P (1998) Effects of ultraviolet, monochromatic and PAR waveband on nitrate reductase activity and pigmentation in a rice field cyanobacterium, Anabaena sp. Acta Hydrobiol 40:105–112

    Google Scholar 

  • Sinha RP, Kumar A, Tyagi MB, Häder D-P (2005) Ultraviolet-B-induced destruction of phycobiliproteins in cyanobacteria. Physiol Mol Biol Plants 11:313–319

    CAS  Google Scholar 

  • Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol B Biol 89:29–35

    Article  CAS  Google Scholar 

  • Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355:1436–1440

    Article  CAS  Google Scholar 

  • Soule T, Stout V, Swingley WD, Meeks JC, Garcia-Pichel F (2007) Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J Bacteriol 189:4465–4472

    Article  CAS  Google Scholar 

  • Sugimoto Y, Nakamura H, Ren S, Hori K, Masuda S (2017) Genetics of the blue light-dependent signal cascade that controls phototaxis in the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 58:458–465

    CAS  Google Scholar 

  • Thomas C, MacGill RS, Miller GC, Pardini RS (1992) Photoactivation of hypericin generates singlet oxygen in mitochondria and inhibits succinoxidase. Photochem Photobiol 55:47–53

    Article  CAS  Google Scholar 

  • Tikhonov AN, Subczynski WK (2019) Oxygenic photosynthesis: EPR study of photosynthetic electron transport and oxygen-exchange, an overview. Cell Biochem Biophys 77:47–59

    Article  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  Google Scholar 

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282

    Article  CAS  Google Scholar 

  • Varuni P, Menon SN, Menon GI (2017) Phototaxis as a collective phenomenon in cyanobacterial colonies. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Wallner T, Pedroza L, Voigt K, Kaever V, Wilde A (2020) The cyanobacterial phytochrome 2 regulates the expression of motility-related genes through the second messenger cyclic di-GMP. Photochem Photobiol Sci 19(5):631–643

    Article  CAS  Google Scholar 

  • Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, Sulzberger B, Bais A, McKenzie RL, Robinson SA, Häder D-P, Paul ND, Bornman JF (2014) Solar ultraviolet radiation in a changing climate. Nat Clim Chang 4:434–441

    Article  Google Scholar 

  • Xu J, Gao K (2016) Photosynthetic contribution of UV-A to carbon fixation by macroalgae. Phycologia 55:318–322

    Article  CAS  Google Scholar 

  • Xue L, Zhang Y, Zhang T, An L, Wang X (2005) Effects of enhanced ultraviolet-B radiation on algae and cyanobacteria. Crit Rev Microbiol 31:79–89

    Article  Google Scholar 

  • Yang Y, Lam V, Adomako M, Simkovsky R, Jakob A, Rockwell NC, Cohen SE, Taton A, Wang J, Lagarias JC (2018) Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 115:E12378–E12387

    Article  CAS  Google Scholar 

  • Zhang F, Scheerer P, Oberpichler I, Lamparter T, Krauß N (2013) Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore. Proc Natl Acad Sci U S A 110:7217–7222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat P. Häder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Häder, D.P., Rastogi, R.P. (2021). UV Stress Responses in Cyanobacteria. In: Rastogi, R.P. (eds) Ecophysiology and Biochemistry of Cyanobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-16-4873-1_6

Download citation

Publish with us

Policies and ethics