Skip to main content

Polyethersulfone and Its Derivatives as Membrane Materials for Dye Removal from Water

  • Chapter
  • First Online:
Membrane Based Methods for Dye Containing Wastewater

Abstract

Water contamination by industrial dye effluents is a critical issue faced on a global level over the past few decades and the problem only seems to rise day by day. Dye-polluted water on its consumption, adversely affects human lives and aquatic lives thus creating an imbalance in the ecosystem. Diverse methods are available to treat dye-contaminated water and membrane technology is established as an emerging one among them. Membrane separation has garnered more attention owing to the salient features such as ease of implementation, low cost, and reduction of waste generation. Polyethersulfone (PES) membranes are extensively used for this purpose as they possess high thermal and mechanical stability over other polymeric membrane materials. The key objective of this book chapter is to consolidate the recent advances made in the usage of PES-based membranes for the removal of dye contaminants. Native PES membranes are highly prone to undergo fouling. The hydrophobic nature associated with PES also reduces the separation efficiency. To overcome these drawbacks and also to render higher dye separation efficiency, several organic and inorganic modifications have been carried out to get custom-modified PES membranes. The modifications and the resultant improvements made in PES membranes have been elaborately reviewed in this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi G, Alizadeh A, Zinadini S, Moradi G (2018) Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Mem Sci 552:326–335. https://doi.org/10.1016/j.memsci.2018.02.018

    Article  CAS  Google Scholar 

  2. Hołda AK, IFJV (2015) Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J Appl Polym Sci 42130:1–17. https://doi.org/10.1002/APP.42130

  3. Al-Ani DM, Al-Ani FH, Alsalhy QF, Ibrahim SS (2019) Preparation and characterization of ultrafiltration membranes from PPSU-PES polymer blend for dye removal. Chem Eng Commun 0:1–19. https://doi.org/10.1080/00986445.2019.1683546

  4. Alardhia SM, Alrubaye JM, Albayati TM (2020) Hollow fiber ultrafiltration membrane for methyl green dye removal. Eng Technol J 38:1077–1083. https://doi.org/10.30684/etj.v38i7A.653

  5. Alenazi NA, Hussein MA, Alamry KA, Asiri AM (2017) Modified polyether-sulfone membrane: a mini review. Des Monomers Polym 20:532–546. https://doi.org/10.1080/15685551.2017.1398208

    Article  CAS  Google Scholar 

  6. Alyarnezhad S, Marino T, Parsa JB et al (2020) Polyvinylidene fluoride-graphene oxide membranes for dye removal under visible light irradiation. Polymers 12:1–19. https://doi.org/10.3390/polym12071509

    Article  CAS  Google Scholar 

  7. Arahman N, Nursidik M et al (2015) The stability of poly(ether sulfone) membranes treated in hot water and hypochlorite solution. Procedia Chem 16:709–715. https://doi.org/10.1016/j.proche.2015.12.017

    Article  CAS  Google Scholar 

  8. Ashok Kumar S, Srinivasan G, Govindaradjane S (2019) Development of a new blended polyethersulfone membrane for dye removal from synthetic wastewater. Environ Nanotechnol Monit Manag 12:100238. https://doi.org/10.1016/j.enmm.2019.100238

  9. Bajpai P (2016) Chapter 11-emerging technologies. In: Bajpai PBT-P and PI (ed) Pulp and Paper Industry. Elsevier, Amsterdam, pp 189–251

    Google Scholar 

  10. Balcik-Canbolat C, Van der Bruggen B (2020) Efficient removal of dyes from aqueous solution: the potential of cellulose nanocrystals to enhance PES nanocomposite membranes. Cellulose 27:5255–5266. https://doi.org/10.1007/s10570-020-03157-y

    Article  CAS  Google Scholar 

  11. Bazargan AM, Gholamvand Z, Naghavi M et al (2009) Phase inversion preparation and morphological study of polyvinylidene fluoride ultrafiltration membrane modified by nano-sized alumina. Funct Mater Lett 2:113–119. https://doi.org/10.1142/S1793604709000648

    Article  CAS  Google Scholar 

  12. Boopathy G, Gangasalam A, Mahalingam A (2020) Photocatalytic removal of organic pollutants and self-cleaning performance of PES membrane incorporated sulfonated graphene oxide/ZnO nanocomposite. J ChemTech Biotech 95:3012–3023. https://doi.org/10.1002/jctb.6462

    Article  CAS  Google Scholar 

  13. Cheng C, Li S, Zhao W et al (2012) The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. J MemSci 417–418:228–236. https://doi.org/10.1016/j.memsci.2012.06.045

    Article  CAS  Google Scholar 

  14. Cheng J, Zhan C, Wu J et al (2020) Highly efficient removal of methylene blue dye from an aqueous solution using cellulose acetate nanofibrous membranes modified by polydopamine. ACS Omega 5:5389–5400. https://doi.org/10.1021/acsomega.9b04425

    Article  CAS  Google Scholar 

  15. Dikin DA, Stankovich S, Zimney EJ et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460. https://doi.org/10.1038/nature06016

    Article  CAS  Google Scholar 

  16. Dong X, Al-Jumaily A, Escobar IC (2018) Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone membranes. Membranes 8(2):23. https://doi.org/10.3390/membranes8020023

    Article  CAS  Google Scholar 

  17. Ezugbe EO, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membranes 10:1–28. https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  18. Foroozmehr F, Borhani S, Hosseini SA (2016) Removal of reactive dyes from wastewater using cyclodextrin functionalized polyacrylonitrile nanofibrous membranes. J Text Polym 4:45–52

    Google Scholar 

  19. Ghadhban MY, Majdi HS, Rashid KT et al (2020) Removal of dye from a leather tanning factory by flat-sheet blend ultrafiltration (UF) membrane. Membranes 10(3):47. https://doi.org/10.3390/membranes10030047

    Article  CAS  Google Scholar 

  20. Ghaemi N, Madaeni SS, Daraei P et al (2015) PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: fabrication and performance optimization in dye removal by RSM. J Hazard Mat 298:111–121. https://doi.org/10.1016/j.jhazmat.2015.05.018

    Article  CAS  Google Scholar 

  21. Gohari B, Abu-Zahra N (2018) Polyethersulfone membranes prepared with 3-aminopropyltriethoxysilane modified alumina nanoparticles for Cu(II) removal from water. ACS Omega 3:10154–10162. https://doi.org/10.1021/acsomega.8b01024

    Article  CAS  Google Scholar 

  22. Hassan AR, Rozali S, Safari NHM, Besar BH (2018) The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies. Environ Eng Res 23:316–322. https://doi.org/10.4491/eer.2018.023

    Article  Google Scholar 

  23. Homem NC, Yamaguchi NU, Vieira MF et al (2017) Surface modification of microfiltration membrane with GO nanosheets for dyes removal from aqueous solutions. Chem Eng Trans 60:259–264. https://doi.org/10.3303/CET1760044

    Article  Google Scholar 

  24. Idris A, Mat Zain N, Noordin MY (2007) Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 207:324–339. https://doi.org/10.1016/j.desal.2006.08.008

    Article  CAS  Google Scholar 

  25. Kadhim RJ, Al-Ani FH, Al-Shaeli M et al (2020) Removal of dyes using graphene oxide (Go) mixed matrix membranes. Membranes 10:1–24. https://doi.org/10.3390/membranes10120366

    Article  CAS  Google Scholar 

  26. Kamari S, Shahbazi A (2020) Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long–term operation and reusability tests. Chemosphere 243:125282. https://doi.org/10.1016/j.chemosphere.2019.125282

  27. Koulivand H, Shahbazi A, Vatanpour V (2019) Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles. Chem Eng Res Des 145:64–75. https://doi.org/10.1016/j.cherd.2019.03.003

    Article  CAS  Google Scholar 

  28. Koulivand H, Shahbazi A, Vatanpour V, Rahmandoust M (2020) Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep Purif Technol 230. https://doi.org/10.1016/j.seppur.2019.115895

  29. Krishnamoorthy R, Sagadevan V (2015) Polyethylene glycol and iron oxide nanoparticles blended polyethersulfone ultrafiltration membrane for enhanced performance in dye removal studies. E-Polymers 15:151–159. https://doi.org/10.1515/epoly-2014-0214

    Article  CAS  Google Scholar 

  30. Lukka Thuyavan Y, Arthanareeswaran G, Ismail AF et al (2020) Treatment of synthetic textile dye effluent using hybrid adsorptive ultrafiltration mixed matrix membranes. Chem Eng Res Des 159:92–104. https://doi.org/10.1016/j.cherd.2020.04.005

    Article  CAS  Google Scholar 

  31. Marjani A, Nakhjiri AT, Adimi M et al (2020) Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-58472-y

    Article  CAS  Google Scholar 

  32. Mathumba P, Maziya K, Kuvarega AT et al (2020) Photocatalytic degradation of a basic dye in water by nanostructured HPEI/TiO2 containing membranes. Water SA 46:500–505. https://doi.org/10.17159/wsa/2020.v46.i3.8660

    Article  Google Scholar 

  33. Min M, Shen L, Hong G et al (2012) Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chem Eng J 197:88–100. https://doi.org/10.1016/j.cej.2012.05.021

    Article  CAS  Google Scholar 

  34. Mohammad AW, Teow YH, Chong WC, Ho KC (2019) Chapter 13 - Hybrid Processes: Membrane Bioreactor. In: Ismail AF, Rahman MA, Othman MHD, Matsuura TBT-MSP and A (eds) Handbooks in Separation Science. Elsevier, pp 401–470

    Google Scholar 

  35. Moradi G, Rahimi M, Zinadini S (2021) Antifouling nanofiltration membrane via tetrathioterephthalate coating on aniline oligomers-grafted polyethersulfone for efficient dye and heavy metal ion removal. J Environ Chem Eng 9:104717. https://doi.org/10.1016/j.jece.2020.104717

  36. Mousavi SR, Asghari M, Mahmoodi NM (2020) Chitosan-wrapped multiwalled carbon nanotube as filler within PEBA thin film nanocomposite (TFN) membrane to improve dye removal. Carbohydrate Poly 237:116128. https://doi.org/10.1016/j.carbpol.2020.116128

  37. Nady N, Schroën K, Franssen MCR et al (2011) Mild and highly flexible enzyme-catalyzed modification of poly(ethersulfone) membranes. ACS Appl Mater Interfaces 3:801–810. https://doi.org/10.1021/am101155e

    Article  CAS  Google Scholar 

  38. Nagarajan D, Venkatanarasimhan S (2019) Copper(II) oxide nanoparticles coated cellulose sponge—an effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ Sci Pollut Res 26:22958–22970. https://doi.org/10.1007/s11356-019-05419-0

    Article  CAS  Google Scholar 

  39. Otitoju TA, Ahmad AL, Ooi BS (2018) Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv 8:22710–22728. https://doi.org/10.1039/c8ra03296c

    Article  CAS  Google Scholar 

  40. Patil H, Shanmugam V, Marathe K (2020) Studies in synthesis and modification of PES membrane and its application for removal of reactive black 5 dye. Indian Chem Eng 0:1–10. https://doi.org/10.1080/00194506.2020.1822761

  41. Quist-Jensen CA, Macedonio F, Drioli E (2015) Membrane technology for water production in agriculture: desalination and wastewater reuse. Desalination 364:17–32. https://doi.org/10.1016/j.desal.2015.03.001

    Article  CAS  Google Scholar 

  42. Rahimi M, Zinadini S, Zinatizadeh AA et al (2016) Hydrophilic goethite nanoparticle as a novel antifouling agent in fabrication of nanocomposite polyethersulfone membrane. J Appl Polym Sci 133:1–13. https://doi.org/10.1002/app.43592

    Article  CAS  Google Scholar 

  43. Rahimpour A, Madaeni SS, Mehdipour-Ataei S (2008) Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. J Mem Sci 311:349–359. https://doi.org/10.1016/j.memsci.2007.12.038

    Article  CAS  Google Scholar 

  44. Rajis Z, Azmi NFAN, Makhtar SNNM et al (2019) Preparation, characterization and performances of photocatalytic TiO2-Ag2O/PESf membrane for methylene blue removal. J Appl Membrane Sci Technol 23:83–97. https://doi.org/10.11113/amst.v23n2.160

    Article  Google Scholar 

  45. Rambabu K, Bharath G, Monash P et al (2019) Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process Saf Environ Prot 124:266–278. https://doi.org/10.1016/j.psep.2019.02.015

    Article  CAS  Google Scholar 

  46. Rambabu K, Srivatsan N, Gurumoorthy AVP (2017) Polyethersulfone-barium chloride blend ultrafiltration membranes for dye removal studies. IOP Conf Ser Mat Sci Eng 263:0–9. https://doi.org/10.1088/1757-899X/263/3/032027

  47. Rambabu K, Velu S (2016) Improved performance of CaCl2 incorporated polyethersulfone ultrafiltration membranes. Periodica Polytech Chem Eng 60:181–191. https://doi.org/10.3311/PPch.8482

    Article  CAS  Google Scholar 

  48. Shaabani N, Zinadini S, Zinatizadeh AA (2018) Preparation and characterization of PES nanofiltration membrane embedded with modified graphene oxide for dye removal from algal wastewater. Journal of Applied Research in Water and Wastewater 9:407–410

    Google Scholar 

  49. Shao H, Qi Y, Liang S et al (2019) Polypropylene composite hollow fiber ultrafiltration membranes with an acrylic hydrogel surface by in situ ultrasonic wave-assisted polymerization for dye removal. J Appl Polym Sci 136:1–10. https://doi.org/10.1002/app.47099

    Article  CAS  Google Scholar 

  50. Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7:1043–1067. https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  51. Shin DS, Kim HG, Ahn HS et al (2017) Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Adv 7:13979–13984. https://doi.org/10.1039/C7RA00114B

    Article  CAS  Google Scholar 

  52. Suhaimi A, Mahmoudi E, Siow KS et al (2020) Nitrogen incorporation by plasma polymerization of heptylamine on PES membrane for removal of anionic dye (Congo red). Int J Environ Sci Technol 1–10. https://doi.org/10.1007/s13762-020-02879-7

  53. Thong Z, Gao J, Lim JXZ et al (2018) Fabrication of loose outer-selective nanofiltration (NF) polyethersulfone (PES) hollow fibers via single-step spinning process for dye removal. Sep Purif Technol 192:483–490. https://doi.org/10.1016/j.seppur.2017.10.031

    Article  CAS  Google Scholar 

  54. Wang Y, Zhu J, Dong G et al (2015) Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Sep Purif Technol 150:243–251. https://doi.org/10.1016/j.seppur.2015.07.005

    Article  CAS  Google Scholar 

  55. Xiang T, Yue WW, Wang R et al (2013) Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids Surf, B 110:15–21. https://doi.org/10.1016/j.colsurfb.2013.04.034

    Article  CAS  Google Scholar 

  56. Zhao C, Xue J, Ran F, Sun S (2013) Modification of polyethersulfone membranes - A review of methods. Prog Mater Sci 58:76–150. https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  57. Zhou J, Chen S, Xu S et al (2016) Graphene oxide-based polyethersulfone core-shell particles for dye uptake. RSC Adv 6:102389–102397. https://doi.org/10.1039/c6ra18950d

    Article  CAS  Google Scholar 

  58. Zinadini S, Zinatizadeh AA, Rahimi M et al (2014) Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349:145–154. https://doi.org/10.1016/j.desal.2014.07.007

    Article  CAS  Google Scholar 

  59. Zinadini S, Zinatizadeh AA, Rahimi M et al (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Mem Sci 453:292–301. https://doi.org/10.1016/j.memsci.2013.10.070

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarnalatha Venkatanarasimhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venkatanarasimhan, S., Nagarajan, D., Palanisamy, T. (2022). Polyethersulfone and Its Derivatives as Membrane Materials for Dye Removal from Water. In: Muthu, S.S., Khadir, A. (eds) Membrane Based Methods for Dye Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-4823-6_9

Download citation

Publish with us

Policies and ethics