Skip to main content

An Introduction to Membrane-Based Systems for Dye Removal

  • Chapter
  • First Online:
Membrane Based Methods for Dye Containing Wastewater

Abstract

Despite significant contributions to the country’s economy and human necessities, the textile industry consumes large quantities of dyes with the discharge of excessive deleterious dye effluents. The wastewater contaminated with dyes if not treated afore discharge poses serious intimidations to the environment and human health. The presence of dyes in untreated wastewater has grown into an emergent apprehension for scientists. Therefore, there is a calamitous prerequisite to discharge wastewater after treatment using different environmentally benign physical, chemical, and biological technologies. The chapter emphasizes the treatment of wastewater dye effluents with membrane-based technologies such as microfiltration, ultrafiltration, nanofiltration, reverse, and forward osmosis. Recent trends in the aforesaid techniques with the benefits and drawbacks have also been reconnoitered in detail. The critical analyses regarding the comparative efficiency of the membrane-based approaches for dye removal from wastewater have been explored systematically. The chapter will widen the industrial applications of membrane-based technology with cost-effectiveness, and performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Engr J 306:1116–1137

    Google Scholar 

  2. Muhammad G, Mehmood A, Shahid M, Ashraf RS, Altaf M, Hussain MA, Raza MA (2020) Biochemical methods for water purification. In: Methods for bioremediation of water and wastewater pollution. Springer, Cham, pp 181–212

    Google Scholar 

  3. Altaf M, Yamin N, Muhammad G, Raza MA, Shahid M, Ashraf RS (2021) Electroanalytical techniques for the remediation of heavy metals from wastewater. In: Water pollution and remediation: heavy metals. Springer, Cham, pp 471–511

    Google Scholar 

  4. Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Google Scholar 

  5. Erkanlı M, Yilmaz L, Culfaz-Emecen PZ, Yetis U (2017) Brackish water recovery from reactive dyeing wastewater via ultrafiltration. J Clean Prod 165:1204–1214

    Google Scholar 

  6. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348

    Google Scholar 

  7. Van’t Hul J, Racz I, Reith T (1997) The application of membrane technology for reuse of process water and minimisation of waste water in a textile washing range. J Soc Dye Colour 113(10):287–294

    Google Scholar 

  8. Metcalf L, Eddy HP, Tchobanoglous G (1991) Wastewater engineering: treatment, disposal, and reuse, vol 4. McGraw-Hill, New York

    Google Scholar 

  9. Cheremisinoff NP (2001) Handbook of water and wastewater treatment technologies. Butterworth-Heinemann, UK

    Google Scholar 

  10. Ravanchi MT, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalin 235(1–3):199–244

    Google Scholar 

  11. Ashraf RS, Abid Z, Shahid M, Rehman ZU, Muhammad G, Altaf M, Raza MA (2021) Methods for the treatment of wastewaters containing dyes and pigments. Water Pollut Rem Org Pollut 2021:597–661

    Google Scholar 

  12. Fane AT, Wang R, Jia Y (2011) Membrane technology: past, present and future. In: Membrane and desalination technologies. Springer, pp 1–45

    Google Scholar 

  13. Baker RW (2010) Research needs in the membrane separation industry: looking back, looking forward. J Membr Sci 362(1–2):134–136

    Google Scholar 

  14. Werber JR, Deshmukh A, Elimelech M (2016) The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ Sci Technol Lett 3(4):112–120

    Google Scholar 

  15. Torki M, Nazari N, Mohammadi T (2017) Evaluation of biological fouling of RO/MF membrane and methods to prevent it. Eur J Adv Eng Technol 4(9):707–710

    Google Scholar 

  16. Ferreira AM, Roque ÉB, Fonseca FVD, Borges CPJD, Treatment W (2015) High flux microfiltration membranes with silver nanoparticles for water disinfection 56(13):3590–3598

    Google Scholar 

  17. Gu Q, Ng TCA, Zain I, Liu X, Zhang L, Zhang Z, Lyu Z, He Z, Ng HY, Wang JJASS (2020) Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. 502:144128

    Google Scholar 

  18. Jafari B, Abbasi M, Hashemifard SAJJoCP (2020) Development of new tubular ceramic microfiltration membranes by employing activated carbon in the structure of membranes for treatment of oily wastewater 244:118720

    Google Scholar 

  19. Hu M-X, Niu H-M, Chen X-L (2019) Zhan H-BJC, Physicochemical SA, Aspects E. Natural cellulose microfiltration membranes for oil/water nanoemulsions separation 564:142–151

    CAS  Google Scholar 

  20. Sinclair T, Robles D, Raza B, Van den Hengel S, Rutjes S, de Roda HA, de Grooth J, de Vos W, Roesink HJC (2018) Physicochemical sA, aspects e. Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications 551:33–41

    CAS  Google Scholar 

  21. Hernández S, Lei S, Rong W, Ormsbee L, Bhattacharyya DJAsc, engineering (2016) Functionalization of flat sheet and hollow fiber microfiltration membranes for water applications 4(3):907–918

    Google Scholar 

  22. Liu X, Jiang B, Yin X, Ma H, Hsiao BSJS, Technology P (2020) Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions 233:115976

    Google Scholar 

  23. Park JW, Lee YJ, Meyer AS, Douterelo I (2018) Maeng SKJWr. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: lab-scale and full-scale studies 144:36–45

    CAS  Google Scholar 

  24. Rasouli Y, Abbasi M, Hashemifard SAJJoACS (2019) Fabrication, characterization, fouling behavior and performance study of ceramic microfiltration membranes for oily wastewater treatment 7(4):476–495

    Google Scholar 

  25. Suresh K, Pugazhenthi G (2016) Uppaluri RJJoWPE. Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surface methodology 13:27–43

    Google Scholar 

  26. Dutta BK (2007) Principles of mass transfer and seperation processes: PHI Learning Pvt. Ltd.

    Google Scholar 

  27. Mulder M, Mulder J (1996) Basic principles of membrane technology. Springer Science & Business Media

    Google Scholar 

  28. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5(39):30801–30818

    Google Scholar 

  29. Krüger R, Vial D, Arifin D, Weber M, Heijnen M (2016) Novel ultrafiltration membranes from low-fouling copolymers for RO pretreatment applications. Desalin Water Treat 57(48–49):23185–23195

    Google Scholar 

  30. Zhang L, Zhang P, Wang M, Yang K, Liu J (2016) Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes. J Environ Biol 37(5):1007

    Google Scholar 

  31. Yun J, Wang Y, Liu Z, Li Y, Yang H, Xu Z-l (2020) High efficient dye removal with hydrolyzed ethanolamine-Polyacrylonitrile UF membrane: Rejection of anionic dye and selective adsorption of cationic dye. Chemosphere 259:127390

    Google Scholar 

  32. Derouich G, Younssi SA, Bennazha J, Cody JA, Ouammou M, El Rhazi M (2020) Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal. J Environ Chem Eng 8(3):103809

    Google Scholar 

  33. Singh R, Sinha MK, Purkait MK (2020) Stimuli responsive mixed matrix polysulfone ultrafiltration membrane for humic acid and photocatalytic dye removal applications. Separation and Purification Technology 250:117247

    Google Scholar 

  34. Hafeez A, Karim ZA, Ismail AF, Samavati A, Said KAM, Selambakkannu S (2020) Functionalized boron nitride composite ultrafiltration membrane for dye removal from aqueous solution. J Membr Sci 612:118473

    Google Scholar 

  35. Gholami H, Gupta P, Gupta R, Rathi P, Morrissey JJ, Singamaneni S (2020) Palladium nanoparticle-decorated mesoporous polydopamine/bacterial nanocellulose as a catalytically active universal dye removal ultrafiltration membrane. ACS Appl Nano Mater 3(6):5437–5448

    Google Scholar 

  36. Yang C, Xu W, Nan Y, Wang Y, Chen X (2020) Novel negatively charged nanofiltration membrane based on 4, 4′-diaminodiphenylmethane for dye removal. Separation and Purification Technology 248:117089

    Google Scholar 

  37. Saja S, Bouazizi A, Achiou B, Ouaddari H, Karim A, Ouammou M, Aaddane A, Bennazha J, Younssi SA (2020) Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal. J Eur Ceram Soc 40(6):2453–2462

    Article  CAS  Google Scholar 

  38. Ouaddari H, Karim A, Achiou B, Saja S, Aaddane A, Bennazha J, El Hassani IEA, Ouammou M, Albizane A (2019) New low-cost ultrafiltration membrane made from purified natural clays for direct Red 80 dye removal. J Environ Chem Eng 7(4):103268

    Google Scholar 

  39. Huang X, Tian C, Qin H, Guo W, Gao P, Xiao H (2020) Preparation and characterization of Al3+-doped TiO2 tight ultrafiltration membrane for efficient dye removal. Ceram Int 46(4):4679–4689

    Article  CAS  Google Scholar 

  40. Oun A, Tahri N, Mahouche-Chergui S, Carbonnier B, Majumdar S, Sarkar S, Sahoo GC, Amar RB (2017) Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: elaboration, characterization and application to dye removal. Sep Purif Technol 188:126–133

    Article  CAS  Google Scholar 

  41. Bouazizi A, Breida M, Karim A, Achiou B, Ouammou M, Calvo J, Aaddane A, Khiat K, Younssi SA (2017) Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal. Ceram Int 43(1):1479–1487

    Article  CAS  Google Scholar 

  42. Marcucci M, Nosenzo G, Capannelli G, Ciabatti I, Corrieri D, Ciardelli G (2001) Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalin 138(1–3):75–82

    Google Scholar 

  43. Koseoglu-Imer DY (2013) The determination of performances of polysulfone (PS) ultrafiltration membranes fabricated at different evaporation temperatures for the pretreatment of textile wastewater. Desalin 316:110–119

    Google Scholar 

  44. Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, Mendoza-Roca JA (2012) Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters. Chem Eng J 192:211–218

    Google Scholar 

  45. Simonič M, Lobnik A (2011) The efficiency of a hybrid flocculation/UF process for a real dye-house effluent using hydrophilic and hydrophobic membranes. Desalin 271(1–3):219–224

    Google Scholar 

  46. Ngang H, Ooi B, Ahmad A, Lai S (2012) Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem Eng J 197:359–367

    Google Scholar 

  47. Wang N, Liu T, Shen H, Ji S, Li JR, Zhang R (2016) Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration. AIChE J 62(2):538–546

    Google Scholar 

  48. Miner G (2005) Nanofiltration: principles and applications. J Am Water Works Assoc 97(11):121

    Google Scholar 

  49. Yang C, Xu W, Nan Y, Wang Y, Hu Y, Gao C, Chen X (2020) Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. J Colloid Interface Sci 562:589–597

    Article  CAS  Google Scholar 

  50. Moradi G, Zinadini S, Rajabi L (2020) Development of high flux nanofiltration membrane using para-amino benzoate ferroxane nanoparticle for enhanced antifouling behavior and dye removal. Process Saf Environ Prot 144:65–78

    Article  CAS  Google Scholar 

  51. Li Q, Liao Z, Fang X, Wang D, Xie J, Sun X, Wang L, Li J (2019) Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Membr Sci 584:324–332

    Article  CAS  Google Scholar 

  52. Qi Y, Zhu L, Shen X, Sotto A, Gao C, Shen J (2019) Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes. Sep Purif Technol 222:117–124

    Article  CAS  Google Scholar 

  53. Zhijiang C, Cong Z, Ping X, Jie G, Kongyin Z (2018) Calcium alginate-coated electrospun polyhydroxybutyrate/carbon nanotubes composite nanofibers as nanofiltration membrane for dye removal. J Mater Sci 53(20):14801–14820

    Article  CAS  Google Scholar 

  54. Askari N, Farhadian M, Razmjou A, Hashtroodi H (2016) Nanofiltration performance in the removal of dye from binary mixtures containing anthraquinone dyes. Desalin Water Treat 57(39):18194–18201

    Article  CAS  Google Scholar 

  55. Liu F, Ma B-r, Zhou D, Zhu L-J, Fu Y-Y, Xue L-x (2015) Positively charged loose nanofiltration membrane grafted by diallyl dimethyl ammonium chloride (DADMAC) via UV for salt and dye removal. React Funct Polym 86:191–198

    Article  CAS  Google Scholar 

  56. Wang T, He X, Li Y, Li J (2018) Novel poly (piperazine-amide)(PA) nanofiltration membrane based poly (m-phenylene isophthalamide)(PMIA) hollow fiber substrate for treatment of dye solutions. Chem Eng J 351:1013–1026

    Article  CAS  Google Scholar 

  57. Wang K, Qin Y, Quan S, Zhang Y, Wang P, Liang H, Ma J, Cheng XQ (2019) Development of highly permeable polyelectrolytes (PEs)/UiO-66 nanofiltration membranes for dye removal. Chem Eng Res Des 147:222–231

    Article  Google Scholar 

  58. Abdi G, Alizadeh A, Zinadini S, Moradi G (2018) Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Membr Sci 552:326–335

    Article  CAS  Google Scholar 

  59. Yu RF, Lin CH, Chen HW, Cheng WP, Kao MC (2013) Possible control approaches of the Electro-Fenton process for textile wastewater treatment using on-line monitoring of DO and ORP. Chem Eng J 218:341–349

    Google Scholar 

  60. Wood AR, Justus K, Parigoris E, Russell A, LeDuc P (2017) Biological inspiration of salt exclusion membranes in mangroves toward fouling‐resistant reverse osmosis membranes. FASEB J 31:949

    Google Scholar 

  61. Ciardelli G, Corsi L, Marcucci M (2001) Membrane separation for wastewater reuse in the textile industry. Resour Conserv Recycl 31(2):189–197

    Google Scholar 

  62. Garud R, Kore S, Kore V, Kulkarni G (2011) A short review on process and applications of reverse osmosis. Univers J Environ Res Technol 1(3)

    Google Scholar 

  63. Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manage 147:55–72

    Google Scholar 

  64. Ong CS, Al-Anzi B, Lau WJ, Goh PS, Lai GS, Ismail AF, Ong YS (2017) Anti-fouling double-skinned forward osmosis membrane with zwitterionic brush for oily wastewater treatment. Sci Rep 7(1):1–11

    Google Scholar 

  65. Suwaileh WA, Johnson DJ, Sarp S, Hilal N (2018) Advances in forward osmosis membranes: altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalin 436:176–201

    Google Scholar 

  66. Blandin G, Verliefde AR, Comas J, Rodriguez-Roda I, Le-Clech P (2016) Efficiently combining water reuse and desalination through forward osmosis—reverse osmosis (FO-RO) hybrids: a critical review. Membranes 6(3):37

    Google Scholar 

  67. Yang E, Chae K-J, Choi M-J, He Z, Kim IS (2019) Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. Desalination 452:40–67

    Article  CAS  Google Scholar 

  68. Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Enviro Sci Technol 43(18):7148–7152

    Google Scholar 

  69. Zhang F, Brastad KS, He Z (2011) Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation. Enviro Sci Technol 45(15):6690–6696

    Google Scholar 

  70. Yuan H, He Z (2015) Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Bioresour Technol 195:202–209

    Google Scholar 

  71. Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 45(10):4652–4657

    Google Scholar 

  72. Liu J, Liu L, Gao B, Yang F (2013) Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation. J Membr Sci 430:196–202

    Google Scholar 

  73. Malaeb L, Katuri KP, Logan BE, Maab H, Nunes SP, Saikaly PE (2013) A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol 47(20):11821–11828

    Google Scholar 

  74. Katuri KP, Werner CM, Jimenez-Sandoval RJ, Chen W, Jeon S, Logan BE, Lai Z, Amy GL, Saikaly PE (2014) A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 48(21):12833–12841

    Google Scholar 

  75. Kim KY, Chae KJ, Choi MJ, Yang ET, Hwang MH, Kim IS (2013) High-quality effluent and electricity production from non-CEM based flow-through type microbial fuel cell. Chem Eng J 218:19–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Arshad Raza or Gulzar Muhammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saif, S. et al. (2022). An Introduction to Membrane-Based Systems for Dye Removal. In: Muthu, S.S., Khadir, A. (eds) Membrane Based Methods for Dye Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-4823-6_1

Download citation

Publish with us

Policies and ethics