Skip to main content

Impact of Common Natural Compound in the Treatment of Alzheimer’s Disease

  • Chapter
  • First Online:
Autism Spectrum Disorder and Alzheimer's Disease

Abstract

Alzheimer’s disease (AD) is considered one of the most complex neurodegenerative disorders. Amyloid and tau pathology, along with neurofibrillary tangles, are most commonly seen in this disease. Various compounds show promising responses in treating this disease, but they also cause severe side effects. To minimize these side effects, researchers explored several natural products for the treatment of this disease. Natural products cause very minimal side effects as compared to isolated chemical compounds. The minimal side effect might be due to the complex synergistic effects of various bioactive components present in these natural products. Several natural products like green tea, epigallocatechin gallate, baicalein, berberine, and quercetin show a robust response in the treatment of AD. Some natural compounds like Ginkgo biloba extract and Huperzine A passed the clinical trial on PD. This chapter has explored the potential of some of the most common natural products to treat AD in a sequence-wide manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ademosun AO, Oboh G, Bello F, Ayeni PO (2016) Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. J Evid Based Complement Alternat Med 21(4):NP11–NP17

    Article  CAS  Google Scholar 

  • Afzal S, Bojesen SE, Nordestgaard BG (2014) Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimer’s Dement 10:296–302

    Article  Google Scholar 

  • Ali B, Jamal QM, Shams S et al (2016) In silico analysis of green tea polyphenols as inhibitors of AChE and BChE enzymes in Alzheimer’s disease treatment. CNS Neurol Disord Drug Targets 15:624–628

    Article  CAS  PubMed  Google Scholar 

  • Annweiler C, Rolland Y et al (2012a) Higher vitamin D dietary intake is associated with lower risk of Alzheimer’s disease: a 7-year follow-up. J Gerontol Biol Sci Med Sci 67(11):1205–1211

    Article  Google Scholar 

  • Annweiler C, Herrmann FR et al (2012b) Effectiveness of the combination of memantine plus vitamin D on cognition in patients with Alzheimer disease: a pre-post pilot study. Cogn Behav Neurol 25:121–127

    Article  PubMed  Google Scholar 

  • Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield AD (2009) Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer’s disease. J Nutr Biochem 20(4):269–275

    Article  CAS  PubMed  Google Scholar 

  • Arab H, Mahjoub S, Hajian-Tilaki K et al (2016) The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: a prospective intervention study. Caspian J Int Med 7:188–194

    Google Scholar 

  • Asai M, Iwata N, Yoshikawa A et al (2007) Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease Ab secretion. Biochem Biophys Res Commun 352:498–502

    Article  CAS  PubMed  Google Scholar 

  • Ashrafpour M, Parsaei S, Sepehri H (2015) Quercetin improved spatial memory dysfunctions in rat model of intracerebroventricular streptozotocin-induced sporadic Alzheimer’sdisease. Natl J Physiol Pharm Pharmacol 5(5):411–415

    Article  CAS  Google Scholar 

  • Biasibetti R, Tramontina AC, Costa AP et al (2013) Green tea (-) epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 236:186–193

    Article  CAS  PubMed  Google Scholar 

  • Boothby LA, Doering PL (2005) Vitamin C and vitamin E for Alzheimer’s disease. Ann Pharmacother 39:2073–2080

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Ettcheto M, Chang JH et al (2019) Dual-drug loaded nanoparticles of epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 301:62–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24(8):1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC (2006) Quercetin inhibition of ROS-dependent and-independent apoptosis in rat glioma C6 cells. Toxicology 223(1–2):113–126

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Li X, Gao P et al (2015) Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1–42 protein. Metab Brain Dis 30:537–544

    Article  CAS  PubMed  Google Scholar 

  • Cheng RX, Hau BYH, Veloso AJ et al (2013) Surface plasmon resonance imaging of amyloid-ß aggregation kinetics in the presence of epigallocatechin gallate and metals. Anal Chem 12:1–23

    Google Scholar 

  • Choi RCY, Zhu JTT, Yung AWY et al (2013) Synergistic action of flavonoids, baicalein, and daidzein in estrogenic and neuroprotective effects: a development of potential health products and therapeutic drugs against Alzheimer’s disease. Evid Based Complement Alternat Med 1:1–10

    CAS  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017) Natural products against Alzheimer’s disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35(2):178–216

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Wang H, Zhao Y et al (2015) Protective effects of baicalin on Ab1–42-induced learning and memory deficit, oxidative stress, and apoptosis in rat. Cell Mol Neurobiol 35:623–632

    Article  CAS  PubMed  Google Scholar 

  • Durairajana SSK, Liua LF, Lua HJ et al (2012) Berberine ameliorates-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol Aging 33:2903–2919

    Article  Google Scholar 

  • Dursun E, Gezen-Ak D, Yilmazer S (2010) A Novel Perspective For Alzheimer’s disease: vitamin D Receptor Suppression By Amyloid-β and preventing the amyloid-β induced alterations by vitamin D in cortical neurons. J Alzheimer’s Dis 23:1–13

    Google Scholar 

  • Engel MFM, van den Akker CC, Schleeger M et al (2012) The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution. J Am Chem Soc 134:14781–14788

    Article  CAS  PubMed  Google Scholar 

  • Fan P, Qi X et al (2020) Network systems pharmacology based mechanism study on the beneficial effects of vitamin D against psychosis in Alzheimer’s disease. Sci Rep 10:6136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farlow MR, Thompson RE et al (2018) A randomized, double-blind, placebo-controlled, phase II study assessing safety, tolerability, and efficacy of bryostatin in the treatment of moderately severe to severe Alzheimer’s disease. J Alzheimer’s Dis

    Google Scholar 

  • Fei Yina F, Liua J, Ji X et al (2011) Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by A-β aggregation in SH-SY5Y cells. Neurosci Lett 492:76–79

    Article  Google Scholar 

  • Fillenbaum GG, Kuchibhatla MN, Hanlon JT et al (2005) Dementia and Alzheimer’s disease in community-dwelling elders taking vitamin C and/or vitamin E. Ann Pharmacother 39:2009–2014

    Article  CAS  PubMed  Google Scholar 

  • Gangwar AK, Rawat A et al (2015) Role of vitamin-D in the prevention and treatment of Alzheimer’s disease. Indian J Physiol Pharmacol 59(1):94–99

    CAS  PubMed  Google Scholar 

  • Gavrilova SI, Preuss UW et al (2014) Efficacy and safety of Ginkgo biloba extract EGb 761® in mild cognitive impairment with neuropsychiatric symptoms: a randomized, placebo-controlled, double-blind, multicenter trial. Int J Geriatr Psychiatry

    Google Scholar 

  • Gezen-Ak D, Dursun E et al (2007) Association between vitamin D gene receptor polymorphism and Alzheimer’s disease. Tohoku J Exp Med 212:275–282

    Article  CAS  PubMed  Google Scholar 

  • Giunta B, Hou H, Zhu Y et al (2010) Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci Lett 471:134–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm MOW, Lehmann J et al (2014) Impact of vitamin D on amyloid precursor protein processing and amyloid-β peptide degradation in Alzheimer’s disease. Neurodegener Dis 13:75–81

    Article  CAS  PubMed  Google Scholar 

  • Grimm MOW, Lehmann J et al (2019) Profiling of Alzheimer’s disease related genes in mild to moderate vitamin D hypovitaminosis. J Nutr Biochem 67:123–137

    Article  CAS  PubMed  Google Scholar 

  • Gu HX, Xu LJ, Liu ZQ et al (2016) The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav Brain Res 15:309–321

    Article  Google Scholar 

  • Harvey BS, Musgrave IF, Ohlsson KS et al (2011) The green tea polyphenol (_)-epigallocatechin-3-gallate inhibits amyloid-β evoked fibril formation and neuronal cell death in vitro. Food Chem 129:1729–1736

    Article  CAS  Google Scholar 

  • He W, Wang C, Chen Y et al (2017) Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-ĸB signaling, oxidative stress and neuro-inflammation. Pharmacol Rep 69:1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Heo HJ, Lee CY (2004) Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52(25):7514–7517

    Article  CAS  PubMed  Google Scholar 

  • Herrschaft H, Nacub A et al (2012) Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 46:716–723

    Article  PubMed  Google Scholar 

  • Hussain HM, Elmegied AA, Ghareeb DA et al (2018) Neuroprotective effect of berberine against environmental heavy metals-induced neurotixicity and Alzheimer’s-like disease in rats. Food Chem Toxicol 111:432–444

    Article  Google Scholar 

  • Huy PDQ, Yu YC, Ngo ST et al (2013) In silico and in vitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer’s disease. Biochim Biophys Acta 27410:1–10

    Google Scholar 

  • Ihl R, Bachinskaya N et al (2011) Efficacy and safety of a once-daily formulation of Ginkgo biloba extract EGb 761 in dementia with neuropsychiatric features: a randomized controlled trial. Int J Geriatr Psychiatry 26:1186–1194

    PubMed  Google Scholar 

  • Ihl R, Tribanek M, Bachinskaya N (2012) Efficacy and tolerability of a once daily formulation of Ginkgo biloba extract EGb 761 ® in Alzheimer’s disease and vascular dementia: results from a randomised controlled trial. Pharmacopsychiatry 45:41–46

    Article  CAS  PubMed  Google Scholar 

  • Ji HF, Shen L (2012) Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. Sci World J 2012:1–4

    Article  Google Scholar 

  • Jiaa L, Liua J, Songa Z (2012) Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J Pharm Pharmacol 64:1510–1521

    Article  Google Scholar 

  • Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S (2011) Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 89(25–26):939–945

    Article  PubMed  Google Scholar 

  • Kaur T, Pathak CM, Pandhi P et al (2008) Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats. Brain Cogn 67:25–30

    Article  PubMed  Google Scholar 

  • Kim T, Lee KY, Park GS et al (2009) L-Theanine, an amino acid in green tea, attenuates β-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-κB pathways. J Free Radic Biol Med 47:1601–1610

    Article  CAS  Google Scholar 

  • Kim JH, Lee J, Lee S, Cho EJ (2016) Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Appl Biol Chem 59(5):721–728

    Article  CAS  Google Scholar 

  • Kim J, Funayama S, Izuo N et al (2019) Dietary supplementation of a high-temperature-processed green tea extract attenuates cognitive impairment in PS2 and Tg2576 mice. Biosci Biotechnol Biochem 83:2364–2371

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Li K, Fu T, Wan C, Zhang D, Song H, Zhang Y, Liu N, Gan Z, Yuan L (2016) Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression. Oncotarget 7(42):67716

    Article  PubMed  PubMed Central  Google Scholar 

  • Kontush A, Mann U, Arlt S et al (2001) Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Radic Biol Med 31:345–354

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee YK, Ban JO et al (2009) Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kB pathways in mice. J Nutr 139:1987–1993

    Article  CAS  PubMed  Google Scholar 

  • Lehmann DJ, Refsum H et al (2011) Vitamin D receptor gene associated withAlzheimer’s disease. Neurosci Lett 504:79–82

    Article  CAS  PubMed  Google Scholar 

  • Li FJ, Shen L, Ji HF (2012) Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer’s disease: a meta-analysis. J Alzheimer’s Dis 31:253–258

    Article  CAS  Google Scholar 

  • Li YL, Guo H, Zhao YQ, Li AF, Ren YQ, Zhang JW (2017) Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid β-peptide treatment. Mol Med Rep 16(2):1573–1577

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Shima BS, Jeea WS et al (2013) Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem 24:1302–1313

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Chang C, Yong C et al (2016) Green tea polyphenols attenuated glutamate excitotoxicity via antioxidative and antiapoptotic pathway in the primary cultured cortical neurons. Oxid Med Cell Longev 2016:1–8

    Google Scholar 

  • Littlejohns TJ, Henley WE et al (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology 83:920–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhou J, Abid MDN et al (2014) Berberine attenuates axonal transport impairment and axonopathy induced by calyculin A in N2a cells. PLoS One 9:e93974

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloret A, Badia MC, Moraa NJ et al (2009) Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and may even be detrimental. J Alzheimer’s Dis 17:143–149

    Article  CAS  Google Scholar 

  • Lohan S, Raza K, Mehta SK et al (2017) Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm 530:263–278

    Article  CAS  PubMed  Google Scholar 

  • Mani RJ, Mittal K, Katare DP (2018) Protective effects of quercetin in zebrafish model of Alzheimer’s disease. Asian J Pharm 12(2):S660

    CAS  Google Scholar 

  • Mizwicki MT, Liu G et al (2013) 1α,25-Dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer’s disease patients. J Alzheimer’s Dis 34:155–170

    Article  CAS  Google Scholar 

  • Mohamed AR, Soliman GY et al (2014) Neuroprotective role of vitamin D3 in colchicine-induced Alzheimer’s disease in rats. Alexandria J Med

    Google Scholar 

  • Molaei A, Hatami H, Dehghan G, Sadeghian R, Khajehnasiri N (2020) Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in animal model of Alzheimer’s disease. Excli J 19:596

    PubMed  PubMed Central  Google Scholar 

  • Mori T, Koyama N, Tan J (2018) Combined treatment with the phenolics (−)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem 294:2714–2731

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Itoh M, Ohta K, Hayashi Y, Hayakawa M, Yamada Y, Akanabe H, Chikaishi T, Nakagawa K, Itoh Y, Muro T (2016) Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport 27(9):671–676

    Article  CAS  PubMed  Google Scholar 

  • Nelsona TJ, Sun M-K et al (2017) Bryostatin effects on cognitive function and PKCε in Alzheimer’s disease phase IIa and expanded access trials. J Alzheimer’s Dis 58:521–535

    Article  Google Scholar 

  • Oliveira JSD, Abdalla FH, Dornelles GL et al (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer’s-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250

    Article  PubMed  Google Scholar 

  • Oudshoorn C, Mattace-Raso FUS et al (2008) Higher serum vitamin D 3 levels are associated with better cognitive test performance in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25:539–543

    Article  CAS  PubMed  Google Scholar 

  • Paula PC, Angelica Maria SG, Luis CH, Gloria Patricia CG (2019) Preventive effect of quercetin in a triple transgenic Alzheimer’s disease mice model. Molecules 24(12):2287

    Article  CAS  PubMed Central  Google Scholar 

  • Petersen RC, Thomas RG, Grundman M et al (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352:2379–2388

    Article  CAS  PubMed  Google Scholar 

  • Pogge E (2015) Vitamin D for the prevention of Alzheimer’s disease. Bioactive nutraceuticals and dietary supplements in neurological and brain disease

    Google Scholar 

  • Polidori MC, Ruggiero C, Croce MF et al (2015) Association of increased carotid intima–media thickness and lower plasma levels of vitamin C and vitamin E in old age subjects: implications for Alzheimer’s disease. J Neural Transm 122(4):523–530

    Article  CAS  PubMed  Google Scholar 

  • Popa DE, Drăgoi CM, Arsene AL, Dumitrescu IB, Nicolae AC, Velescu BS, Burcea-Dragomiroiu GT (2017) The relationship between phenolic compounds from diet and microbiota. Phenolic compounds-biological activity

    Google Scholar 

  • Rafii MS, Walsh S et al (2011) A phase II trial of huperzine A in mild to moderate Alzheimer disease. Neurology 76:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai SN, Singh C, Singh A, Singh MP, Singh BK (2020) Mitochondrial dysfunction: a potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol 57(7):3075–3088

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Smith AD (2003) Low vitamin B-12 status in confirmed Alzheimer’s disease as revealed by serum holotranscobalamin. J Neurol Neurosurg Psychiatry 74:959–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringman JM, Frautschy SA et al (2012) Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Res Ther 4:43

    Article  CAS  Google Scholar 

  • Schimidt HL, Garcia A, Martins A et al (2017) Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int 100:442–448

    Article  CAS  PubMed  Google Scholar 

  • Scott Turner R, Thomas RG et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Am Acad Neurol 85:1383–1391

    Google Scholar 

  • Shao R, Xiao J (2013) Natural products for treatment of Alzheimer’s disease and related diseases: understanding their mechanism of action. Curr Neuropharmacol 11(4):337

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith A, Giuntac B, Bickford PC et al (2010) Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suematsu N, Hosoda M, Fujimori K (2011) Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci Lett 504(3):223–227

    Article  CAS  PubMed  Google Scholar 

  • Takasaki J, Ono K, Yoshiik Y et al (2014) Vitamin A has anti-oligomerization effects on amyloid-β in vitro. J Alzheimer’s Dis 27:271–280

    Article  Google Scholar 

  • Tomás-Barberán FA, Selma MV, Espín JC (2016) Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 19(6):471–476

    Article  PubMed  Google Scholar 

  • Tong-Un T, Wannanon P, Wattanathorn J, Phachonpai W (2010) Cognitive-enhancing and antioxidative activities of quercetin liposomes in animal model of Alzheimer’s disease. J Biol Sci 10:84–91

    CAS  Google Scholar 

  • Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas-Restrepo F, Sabogal-Guáqueta AM, Cardona-Gómez GP (2018) Quercetin ameliorates inflammation in CA1 hippocampal region in aged triple transgenic Alzheimer’s disease mice model. Biomédica 38:62–69

    Google Scholar 

  • Vellas B, Coley N et al (2012) Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol 11:851–859

    Article  CAS  PubMed  Google Scholar 

  • Wenguang C, Junfang T (2018) Combined application of tenuigenin and β-asarone improved the efficacy of memantine in treating moderate-to-severe Alzheimer’s disease. Drug Design Dev Ther 12:455–462

    Article  Google Scholar 

  • Wobst HJ, Sharma A, Diamond MI et al (2015) The green tea polyphenol-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 589:77–83

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Wang C, Chen H et al (2014) Aβ-induced microglial cell activation is inhibited by baicalin through the JAK2/STAT3 signaling pathway. Int J Neurosci 124(8):609–620

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wang Y et al (2013) Huperzine A for Alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One 8(9):e74916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadeh KR, Shytle D, Sun N et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    Article  Google Scholar 

  • Zhang SQ, Obregon D, Ehrhart J et al (2013) Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 91:1239–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhou X, Yu Q et al (2014) Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. Appl Mater Interfaces 6:8475–8487

    Article  CAS  Google Scholar 

  • Zhao J, Lu S, Yu H et al (1678) Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of n eural stem cells in Alzheimer’ s disease model rats. Brain Res 2018:187–194

    Google Scholar 

  • Zhao Y, Sun Y et al (2013) Vitamin D levels in Alzheimer’s and Parkinson’s diseases: a meta-analysis. Nutrition 29:828–832

    Article  CAS  PubMed  Google Scholar 

  • Zhu CW, Grossman H (2018) A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: a pilot study. Alzheimer’s Dement 4:609–616

    Article  Google Scholar 

  • Zhu F, Qian C (2006) Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci 78:1–9

    Google Scholar 

  • Zhu G, Yang S, Xie Z et al (2018) Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharm 138:331–340

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge UGC Dr. D.S. Kothari Postdoctoral scheme for awarding the fellowship to Dr. Sachchida Nand Rai (Ref. No-F.4-2/2006 (BSR)/BL/19-20/0032). CS, VK, HH, TB, VP, and AS wish to thank Director, ISF College of Pharmacy, Moga, for motivation to write this manuscript.

Conflict of Interest

All authors declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, V.P. et al. (2021). Impact of Common Natural Compound in the Treatment of Alzheimer’s Disease. In: Md Ashraf, G., Alexiou, A. (eds) Autism Spectrum Disorder and Alzheimer's Disease . Springer, Singapore. https://doi.org/10.1007/978-981-16-4558-7_4

Download citation

Publish with us

Policies and ethics