Skip to main content

Hormonal and Targeted Treatments in Breast Cancer

  • Chapter
  • First Online:
Breast Cancer

Abstract

History of hormonal treatment is 125 years old, since the time Beatson performed oophorectomy in 1895 to show breast cancer regression. William McGuire in San Antonio, Texas emphasized and extensively studied estrogen receptor in breast cancer tissue and later Dr. Jordan identified the blockage of estrogen receptors by Tamoxifen, a molecule developed for inducing ovulation. Similarly, Trastuzumab for the Human epidermal growth receptor type 2 over-expressed breasts cancer was used first in a trial in 1992 at UCLA. Prior to these breast cancers was treated by surgery, radiotherapy and chemotherapy. There has been a steady but important development both in the hormonal and non-hormonal targets and the agents acting against these targets that have improved survival in early and metastatic breast cancers. Hormonal treatments are generally used as adjuvant to improve survival, and definitive strategies in elderly hormone receptor positive tumors. New hormone agents are being discovered rather slowly. Not all breast cancer tissues appear to have biologically recognizable targets that can be attacked. Barely one-third of the breast cancer may show some activity on which effective targeted treatments can be used. Majority breast cancer are hormone receptor positive (60%) or Triple negative (15–20%). This chapter illustrates the recent advances on hormonal and targeted treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet. 1896;2:104–7.

    Article  Google Scholar 

  2. Herynk MH, Fuqua SA. Estrogen eceptor mutations in human disease. Endocr Rev. 2004;25:869–98.

    Article  CAS  PubMed  Google Scholar 

  3. Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M, Lebeau A, Terracciano L, Al-Kuraya K, Janicke F, et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet. 2007;39:655–60.

    Article  CAS  PubMed  Google Scholar 

  4. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.

    Article  CAS  PubMed  Google Scholar 

  5. Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116(3):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korenman SG. Oestrogen window hypothesis of the aetiology of breast cancer. Lancet. 1980;1(8170):700–1.

    Article  CAS  PubMed  Google Scholar 

  7. Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer. 2003;10:179–86.

    Article  CAS  PubMed  Google Scholar 

  8. Yager JD, Davidson NE. Mechanisms of disease: estrogen carcinogenesis in breast cancer (2006). N Engl J Med. 2006;354:270–82.

    Article  CAS  PubMed  Google Scholar 

  9. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994;54:2552–5.

    CAS  PubMed  Google Scholar 

  10. Encarnacion CA, Ciocca DR, McGuire WL, et al. Measurement of steroid hormone receptors in breast cancer patients on Tamoxifen. Breast Cancer Res Treat. 1993;26:237–46.

    Article  CAS  PubMed  Google Scholar 

  11. Normanno N, Di Maio M, De Maio E, et al. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer. 2005;12(4):721–47.

    Article  CAS  PubMed  Google Scholar 

  12. Gierach GL, Curtis RE, Pfeiffer RM, et al. Association of adjuvant tamoxifen and aromatase inhibitor therapy with contralateral breast cancer risk among US women with breast cancer in a general community setting. JAMA Oncol. 2017;3(2):186–93.

    Article  PubMed  Google Scholar 

  13. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst. 1998;90:1371–88.

    Article  CAS  PubMed  Google Scholar 

  14. Veronesi U, Maisonneuve P, Rotmensz N, et al. Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy. J Natl Cancer Inst. 2007;9(9):727–37.

    Article  Google Scholar 

  15. Cuzick J, Sestak I, Cawthorn S, et al. Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trial. Lancet Oncol. 2015;6(1):67–75.

    Article  Google Scholar 

  16. Vogel VG, Costantino JP, Wickerham DL, et al. Effects of Tamoxifen vs Raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006;296(24):2926.

    Article  Google Scholar 

  17. Goss PE, Ingle JN, Ales-Martinez JE, Cheung AM, Chlebowski RT, Wactawski-Wende J, McTiernan A, Robbins J, Johnson KC, Martin LW, Winquist E, Sarto GE, Garber JE, Fabian CJ, Pujol P, Maunsell E, Farmer P, Gelmon KA, Tu D, Richardson H. NCIC CTG MAP.3 Study Investigators: exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med. 2011;364:2381–91.

    Article  CAS  PubMed  Google Scholar 

  18. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet. 1999;353(9169):1993–2000.

    Article  CAS  PubMed  Google Scholar 

  19. Houghton J, George WD, Cuzick J, et al. Radiotherapy and Tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet. 2003;362:95–102.

    Article  PubMed  Google Scholar 

  20. Cuzick J, Sestak I, Pinder SE, et al. Effect of Tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol. 2011;12(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  21. Forbes JF, Sestak I, Howell A, et al. Anastrazole versus Tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial. Lancet. 2016;387(10021):866–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Controlled trial of Tamoxifen as a single adjuvant agent in the management of early breast cancer. ‘Nolvadex’ Adjuvant Trial Organisation. Br J Cancer. 1988;57(6):608–11.

    Google Scholar 

  23. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.

    Article  Google Scholar 

  24. Fisher B, Dignam J, Bryant J, et al. Five versus more than five years of Tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor positive tumors. J Natl Cancer Inst. 1996;88:1529–42.

    Article  CAS  PubMed  Google Scholar 

  25. Albain KS, Barlow WE, Ravdin PM, et al. Adjuvant chemotherapy and timing of Tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet. 2009;374:2055–63.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davies C, Pan H, Godwin J, et al. Long term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor posititive breast cancer: ATLAS, randomised trial. Lancet. 2013;381(9869):805–16. https://doi.org/10.1016/S0140-6736(12)61963-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baum M, Buzdar A, Cuzick J, et al. Anastrazole alone or in combination with Tamoxifen versus Tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer. 2003;98(9):1802–10.

    Article  CAS  PubMed  Google Scholar 

  28. Goss PE, Ingle JN, Martino S, et al. A randomized trial of Letrozole in postmenopausal women after five years of Tamoxifen therapy for early-stage breast cancer. N Engl J Med. 2003;349(19):1793–802.

    Article  CAS  PubMed  Google Scholar 

  29. Sandeep K, Rai R, Agarwal GG, Dwivedi V, Kumar S, Das V. A randomised double blind placebo controlled clinical trial of centchroman (ormeloxifene) in breast pain and nodularity (benign breast disorder). Natl Med J India. 2013;26:69–74. http://www.nmji.in/archives/Volume-26/Issue-2/Original-Article-I.pdf

    Google Scholar 

  30. Gara RK, Sundram V, Chauhan SC, Jaggi M. Anti-cancer potential of a novel SERM ormeloxifene. Curr Med Chem. 2013;20(33):4177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Misra NC, Nigam PK, Gupta R, Agarwal AK, Kamboj VP. Centchroman - a non-steriodal anti-cancer agent for advanced breast cancer: Phase II study. Int J Cancer. 1989;43:781–3.

    Article  CAS  PubMed  Google Scholar 

  32. LHRH-agonists in Early Breast Cancer Overview group, Cuzick J, Ambroisine L, et al. Use of luteinising-hormone-releasing hormone agonists as adjuvant treatment in premenopausal patients with hormone-receptor-positive breast cancer: a meta-analysis of individual patient data from randomised adjuvant trials. Lancet. 2007;369(9574):1711–23.

    Article  Google Scholar 

  33. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–68.

    Article  CAS  PubMed  Google Scholar 

  34. Schramm A, De Gregorio N, Widschwendter P, Fink V, Huober J. Targeted therapies in HER2-positive breast cancer – a systematic review. Breast Care (Basel, Switzerland). 2015;10:173–8.

    Article  Google Scholar 

  35. Schmitz KR, Ferguson KM. Interaction of antibodies with ErbB receptor extracellular regions. Exp Cell Res. 2009;315(4):659–70.

    Article  CAS  PubMed  Google Scholar 

  36. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.

    Article  CAS  PubMed  Google Scholar 

  37. Goldhirsch A, Gelber RD, Piccart-Gebhart MJ, et al. 2 years versus 1 year of adjuvant Trastuzumab for HER2-positive breast cancer (HERA): an open-label, randomised controlled trial. Lancet. 2013;382(9897):1021–8.

    Article  CAS  PubMed  Google Scholar 

  38. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    Article  CAS  PubMed  Google Scholar 

  39. Perez EA, Romond EH, Suman VJ, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol. 2014;32(33):3744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swain SM, Miles D, Kim SB, et al. Pertuzumab, Trastuzumab, and Docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(4):519–30.

    Article  CAS  PubMed  Google Scholar 

  41. Buzdar AU, Ibrahim NK, Francis D, et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with Trastuzumab, paclitaxel, and epirubicinchemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol. 2005;23(16):3676–85.

    Article  CAS  PubMed  Google Scholar 

  42. Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant chemotherapy with Trastuzumab followed by adjuvant Trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet. 2010;375(9712):377–84.

    Article  CAS  PubMed  Google Scholar 

  43. Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant and adjuvant Trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort [published correction appears in Lancet Oncol. 2018 Dec;19(12):e667]. Lancet Oncol. 2014;15(6):640–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wang H, et al. The prognosis analysis of different metastasis pattern in patients with different breast cancer subtypes: a SEER based study. Oncotarget. 2017;8(16):26368–79.

    Article  PubMed  Google Scholar 

  45. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of Tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  46. Slodkowska EA, Ross JS. MammaPrint 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn. 2009;9(5):417–22.

    Article  PubMed  Google Scholar 

  47. Attuluri AK, Prakash VSC, Gunda A, et al. Analytical validation of CanAssist-Breast: an immunohistochemistry based prognostic test for hormone receptor positive breast cancer patients. BMC Cancer. 2019;19(1):249.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  49. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rueda OM, Sammut SJ, Seoane JA, et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature. 2019;567:399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lambert JM, Chari RVJ. Ado-Trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57:6949–64.

    Article  CAS  PubMed  Google Scholar 

  53. Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer [published correction appears in N Engl J Med. 2013 20;368(25):2442]. N Engl J Med. 2012;367(19):1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecanin previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.

    Article  CAS  PubMed  Google Scholar 

  55. Schmid P, Cortes J, Pusztai L, McArthur H, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382:810–21.

    Article  CAS  PubMed  Google Scholar 

  56. Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51.

    Article  CAS  PubMed  Google Scholar 

  57. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–212.

    Article  CAS  PubMed  Google Scholar 

  58. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  59. Dedes KJ, Wilkerson PM, Wetterskog D, Weigelt B, Ashworth A, Reis‐Filho JS. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle. 2011;10:1192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8:362ps17.

    Article  PubMed  Google Scholar 

  61. Robson M, Im S-A, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–33.

    Article  CAS  PubMed  Google Scholar 

  62. Litton JK, Rugo HS, Ettl J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63.

    Article  CAS  PubMed  Google Scholar 

  63. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18:17.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Finn RS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925–36.

    Article  CAS  PubMed  Google Scholar 

  65. Ciruelos E, et al. Abstract PD3-03: SOLTI-1303 PATRICIA phase II trial (STAGE 1)–Palbociclib and Trastuzumab in postmenopausal patients with HER2-positive metastatic breast cancer. Cancer Res. 2019;79:PD3–PD03.

    Article  Google Scholar 

  66. Andre F, Ciruelos E, Rubovszky G, Campine M, for the SOLAR-1 Group, et al. Alpelisib for PIK3CA-mutated. hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929–40. https://doi.org/10.1056/NEJMoa1813904.

    Article  CAS  PubMed  Google Scholar 

  67. Byler S, Goldgar S, Heerboth S, et al. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014;34:1071–7.

    CAS  PubMed  Google Scholar 

  68. Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis. 2011;32:224–32.

    Article  CAS  PubMed  Google Scholar 

  69. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.

    Article  CAS  PubMed  Google Scholar 

  71. Chang HW, Wang HC, Chen CY, et al. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activityin mcf-7 human breast cancer cells. Molecules. 2014;19:3149–59.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chik F, Machnes Z, Szyf M. Synergistic antibreast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′ deoxycytidine. Carcinogenesis. 2014;35:138–44.

    Article  CAS  PubMed  Google Scholar 

  73. Cody JJ, Markert JM, Hurst DR. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells. PLoS One. 2014;9:e92919.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wilson-Edell KA, Yevtushenko MA, et al. mTORC1/C2 and pan-HDAC inhibitors synergisticallyimpair breast cancer growth by convergentAKT and polysome inhibiting mechanisms. Breast Cancer Res Treat. 2014;144:287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Al-Rayyan N, Litchfield LM, Ivanova MM, et al. 5-Aza-2-deoxycytidine and trichostatin A increase COUP-TFII expression in antiestrogen resistant breast cancer cell lines. Cancer Lett. 2014;347:139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fortunati N, Bertino S, Costantino L, et al. Valproic acid restores ER alpha and antiestrogen sensitivity to ER alpha-negative breast cancer cells. Mol Cell Endocrinol. 2010;314:17–22.

    Article  CAS  PubMed  Google Scholar 

  77. Sabnis GJ, GoloubevaO CS, et al. Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to Letrozole. Cancer Res. 2011;71:1893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang X, Phillips DL, Ferguson AT, et al. Synergistic activation of functional estrogen receptor(ER)-alpha by DNA methyltransferase and histonedeacetylase inhibition in human ER-alpha negative breast cancer cells. Cancer Res. 2001;61:7025–9.

    CAS  PubMed  Google Scholar 

  79. Sharma D, Saxena NK, Davidson NE, Vertino PM. Restoration of Tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res. 2006;66:6370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mongan NP, Gudas LJ. Valproic acid, in combination with all-trans retinoic acid and 5-aza-20-deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther. 2005;4:477–86.

    Article  CAS  PubMed  Google Scholar 

  81. Yao J, Zhou E, Wang Y, et al. MicroRNA-200a inhibits cell proliferation by targeting mitochondrial transcription factor A in breast cancer. DNA Cell Biol. 2014;33:291–300.

    Article  CAS  PubMed  Google Scholar 

  82. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–803.

    Article  CAS  PubMed  Google Scholar 

  83. Mei M, Ren Y, Zhou X, et al. Down regulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat. 2010;9:77–86.

    Article  CAS  PubMed  Google Scholar 

  84. Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 2010;285:17869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ouzounova M, Vuong T, Ancey PB, et al. Micro RNA miR-30 family regulates non attachment growth of breast cancer cells. BMC Genomics. 2013;14:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar MS FRCS, PhD, MMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Gupta, S., Maurya, A.P., Singh, R., Nigam, S. (2022). Hormonal and Targeted Treatments in Breast Cancer. In: Sharma, S.C., Mazumdar, A., Kaushik, R. (eds) Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-16-4546-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4546-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4545-7

  • Online ISBN: 978-981-16-4546-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics