Skip to main content

Role of Nuclear Medicine in Breast Cancer

  • Chapter
  • First Online:
Breast Cancer

Abstract

Nuclear Medicine involves the use of radioactive elements tagged with appropriate compounds (radiotracers) for various diagnostic and therapeutic indications. Nuclear Medicine imaging offers the advantage of early detection as the localization of the radiotracers is based on functional changes at the tissue/cellular level, which often precede morphologic changes in a diseased state. Various domains of Nuclear Medicine are involved intricately in the management of patients with breast cancer. In the present chapter, we discuss the established diagnostic and therapeutic roles of Nuclear Medicine, including gamma-camera and PET imaging, guided interventions, and palliative therapies. We review the current evidence around the clinical appropriateness of these procedures and discuss their place in the present management algorithms, especially of imaging modalities in widespread use, such as 18F-FDG PET/CT. We also briefly explore the currently investigational radiotracers and their potential clinical utility in patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham MM. Clinical molecular imaging with radiotracers: current status. Med Princ Pract. 2012;21:197–208.

    Article  Google Scholar 

  2. Hicks RJ, Hofman MS. Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat Rev Clin Oncol. 2012;9:712–20.

    Article  CAS  Google Scholar 

  3. Wong TZ, Paulson EK, Nelson RC, Patz EF, Coleman RE. Practical approach to diagnostic CT combined with PET. Am J Roentgenol. 2007;188:622–9.

    Article  Google Scholar 

  4. Gallamini A, Zwarthoed C, Borra A. Positron emission tomography (PET) in oncology. Cancers (Basel). 2014;6:1821–89.

    Article  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  Google Scholar 

  6. Munoz D, Near AM, van Ravesteyn NT, Lee SJ, Schechter CB, Alagoz O, et al. Effects of screening and systemic adjuvant therapy on ER-specific US breast cancer mortality. J Natl Cancer Inst. 2014;106.

    Google Scholar 

  7. De Gelder R, Heijnsdijk EAM, Fracheboud J, Draisma G, De Koning HJ. The effects of population-based mammography screening starting between age 40 and 50 in the presence of adjuvant systemic therapy. Int J Cancer. 2015;137:165–72.

    Article  Google Scholar 

  8. Taillefer R. The role of 99mTc-sestamibi and other conventional radiopharmaceuticals in breast cancer diagnosis. Semin Nucl Med. 1999;29:16–40.

    Article  CAS  Google Scholar 

  9. Parihar AS, Bhadada S, Bhattacharya A, Mittal BR. Facial dysmorphism due to multiple brown tumors secondary to large parathyroid adenoma, diagnosed on 99mTc-Sestamibi parathyroid scintigraphy. Indian J Nucl Med. 2018;33:255–6.

    Google Scholar 

  10. American College of Radiology. ACR practice parameter for the performance of molecular breast imaging (MBI) using a dedicated gamma camera [Internet]. 2017 [cited 2020 May 7]. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MBI.pdf?la=en

  11. Narayanan D, Berg WA. Dedicated breast gamma camera imaging and breast PET: current status and future directions. PET Clin. 2018;13:363–81.

    Google Scholar 

  12. Hsu DFC, Freese DL, Levin CS. Breast-dedicated radionuclide imaging systems. J Nucl Med. 2016;57:40S–5S.

    Article  CAS  Google Scholar 

  13. Conners AL, Hruska CB, Tortorelli CL, Maxwell RW, Rhodes DJ, Boughey JC, et al. Lexicon for standardized interpretation of gamma camera molecular breast imaging: observer agreement and diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2012;39:971–82.

    Article  Google Scholar 

  14. Shermis RB, Wilson KD, Doyle MT, Martin TS, Merryman D, Kudrolli H, et al. Supplemental breast cancer screening with molecular breast imaging for women with dense breast tissue. Am J Roentgenol. 2016;207:450–7.

    Article  Google Scholar 

  15. Rechtman LR, Lenihan MJ, Lieberman JH, Teal CB, Torrente J, Rapelyea JA, et al. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. Am J Roentgenol. 2014;202:293–8.

    Article  Google Scholar 

  16. Freifelder R, Karp JS. Dedicated PET scanners for breast imaging. Phys Med Biol. 1997;42:2463–80.

    Article  CAS  Google Scholar 

  17. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258:59–72.

    Article  Google Scholar 

  18. Ulaner GA. PET/CT for patients with breast cancer: where is the clinical impact? Am J Roentgenol. 2019;213:254–65.

    Article  Google Scholar 

  19. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O’Malley JP. 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42:5–13.

    Article  Google Scholar 

  20. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45:1431–4.

    Google Scholar 

  21. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl_1):122S–50S.

    Article  CAS  Google Scholar 

  22. American Joint Committee on Cancer. In: Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, et al., editors. AJCC cancer staging manual. 8th ed. Springer; 2017. 1049 p.

    Google Scholar 

  23. Avril N, Rosé CA, Schelling M, Dose J, Kuhn W, Bense S, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18:3495–502.

    Article  CAS  Google Scholar 

  24. Parihar AS, Mittal BR, Vadi SK, Kumar R, Nambiyar K, Radotra B, et al. 18F-FDG PET/CT detects metastatic renal cell carcinoma masquerading as primary breast malignancy. Nucl Med Mol Imaging. 2018;52:475–8.

    Article  CAS  Google Scholar 

  25. Korn RL, Yost AM, May CC, Kovalsky ER, Orth KM, Layton TA, et al. Unexpected focal hypermetabolic activity in the breast: significance in patients undergoing 18 F-FDG PET/CT. Am J Roentgenol. 2006;187:81–5.

    Article  Google Scholar 

  26. Kang BJ, Lee JH, Yoo IR, Kim SH, Choi JJ, Jeong SH, et al. Clinical significance of incidental finding of focal activity in the breast at 18F-FDG PET/CT. Am J Roentgenol. 2011;197:341–7.

    Article  Google Scholar 

  27. Litmanovich D, Gourevich K, Israel O, Gallimidi Z. Unexpected foci of 18F-FDG uptake in the breast detected by PET/CT: incidence and clinical significance. Eur J Nucl Med Mol Imaging. 2009;36:1558–64.

    Article  CAS  Google Scholar 

  28. Kumar R, Rani N, Patel C, Basu S, Alavi A. False-negative and false-positive results in FDG-PET and PET/CT in breast cancer. PET Clin. 2009;4:289–98.

    Article  Google Scholar 

  29. Basu S, Chen W, Tchou J, Mavi A, Cermik T, Czerniecki B, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer. 2008;112:995–1000.

    Article  CAS  Google Scholar 

  30. Adejolu M, Huo L, Rohren E, Santiago L, Yang WT. False-positive lesions mimicking breast cancer on FDG PET and PET/CT. Am J Roentgenol. 2012;198:304–14.

    Article  Google Scholar 

  31. Hindié E, Groheux D, Brenot-Rossi I, Rubello D, Moretti JL, Espié M. The sentinel node procedure in breast cancer: nuclear medicine as the starting point. J Nucl Med. 2011;52:405–14.

    Article  Google Scholar 

  32. Cooper K, Meng Y, Harnan S, Ward S, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) and magnetic resonance imaging (MRI) for the assessment of axillary lymph node metastases in early breast cancer: systematic review and economic evaluation. Health Technol Assess (Rockv). 2011;15:1–134.

    Google Scholar 

  33. Ueda S, Tsuda H, Asakawa H, Omata J, Fukatsu K, Kondo N, et al. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer. BMC Cancer. 2008;8:165.

    Article  Google Scholar 

  34. Heusner TA, Kuemmel S, Hahn S, Koeninger A, Otterbach F, Hamami ME, et al. Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast cancer patients. Eur J Nucl Med Mol Imaging. 2009;36:1543–50.

    Article  CAS  Google Scholar 

  35. Cooper KL, Harnan S, Meng Y, Ward SE, Fitzgerald P, Papaioannou D, et al. Positron emission tomography (PET) for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol. 2011;37:187–98.

    Article  CAS  Google Scholar 

  36. Segaert I, Mottaghy F, Ceyssens S, De Wever W, Stroobants S, Van Ongeval C, et al. Additional value of PET-CT in staging of clinical stage IIB and III breast cancer. Breast J. 2010;16:617–24.

    Article  Google Scholar 

  37. Jochelson MS, Lebron L, Jacobs SS, Zheng J, Moskowitz CS, Powell SN, et al. Detection of internal mammary adenopathy in patients with breast cancer by PET/CT and MRI. Am J Roentgenol. 2015;205:899–904.

    Article  Google Scholar 

  38. Aukema TS, Straver ME, Peeters MJTFDV, Russell NS, Gilhuijs KGA, Vogel WV, et al. Detection of extra-axillary lymph node involvement with FDG PET/CT in patients with stage II-III breast cancer. Eur J Cancer. 2010;46:3205–10.

    Article  Google Scholar 

  39. Abe O, Abe R, Enomoto K, Kikuchi K, Koyama H, Masuda H, et al. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.

    Article  Google Scholar 

  40. Alberini J-LL, Lerebours F, Wartski M, Fourme E, Le Stanc E, Gontier E, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer. 2009;115:5038–47.

    Article  Google Scholar 

  41. Groheux D, Hindie E, Delord M, Giacchetti S, Hamy A-S, de Bazelaire C, et al. Prognostic impact of 18FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst. 2012;104:1879–87.

    Article  Google Scholar 

  42. Xiao W, Zheng S, Yang A, Zhang X, Zou Y, Tang H, et al. Breast cancer subtypes and the risk of distant metastasis at initial diagnosis: a population-based study. Cancer Manag Res. 2018;10:5329–38.

    Article  CAS  Google Scholar 

  43. Colzani E, Johansson ALV, Liljegren A, Foukakis T, Clements M, Adolfsson J, et al. Time-dependent risk of developing distant metastasis in breast cancer patients according to treatment, age and tumour characteristics. Br J Cancer. 2014;110:1378–84.

    Article  CAS  Google Scholar 

  44. Ulaner GA, Castillo R, Goldman DA, Wills J, Riedl CC, Pinker-Domenig K, et al. 18F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2016;43:1937–44.

    Article  CAS  Google Scholar 

  45. Chen MT, Sun HF, Zhao Y, Fu WY, Yang LP, Gao SP, et al. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Sci Rep. 2017;7:1–8.

    Google Scholar 

  46. Nakai T, Okuyama C, Kubota T, Yamada K, Ushijima Y, Taniike K, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2005;32:1253–8.

    Article  Google Scholar 

  47. Morris PG, Lynch C, Feeney JN, Patil S, Howard J, Larson SM, et al. Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol. 2010;28:3154–9.

    Article  Google Scholar 

  48. Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, et al. NCCN guidelines version 1. Breast Cancer. 2021; [cited 2021 Mar 9]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf

  49. Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266:388–405.

    Article  Google Scholar 

  50. Han S, Choi JY. Impact of 18F-FDG PET, PET/CT, and PET/MRI on staging and management as an initial staging modality in breast cancer. Clin Nucl Med. 2021;46(4):271–82.

    Article  Google Scholar 

  51. Ulaner GA, Jacene HA, Parihar AS, Groheux D. Evidence based best practices: 18F-FDG PET staging of newly diagnosed breast cancer. Clin Nucl Med. 2021;46(7):569–70.

    Article  Google Scholar 

  52. Groheux D, Hindié E, Giacchetti S, Delord M, Hamy AS, De Roquancourt A, et al. Triple-negative breast cancer: early assessment with 18F-FDG PET/CT during neoadjuvant chemotherapy identifies patients who are unlikely to achieve a pathologic complete response and are at a high risk of early relapse. J Nucl Med. 2012;53:249–54.

    Article  CAS  Google Scholar 

  53. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24:5366–72.

    Article  Google Scholar 

  54. Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S, et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol. 2009;27:535–41.

    Article  Google Scholar 

  55. Schelling M, Avril N, Nährig J, Kuhn W, Römer W, Sattler D, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000;18:1689–95.

    Article  CAS  Google Scholar 

  56. Riedl CC, Pinker K, Ulaner GA, Ong LT, Baltzer P, Jochelson MS, et al. Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. Eur J Nucl Med Mol Imaging. 2017;44:1428–37.

    Article  CAS  Google Scholar 

  57. Iagaru A, Minamimoto R. Nuclear medicine imaging techniques for detection of skeletal metastases in breast cancer. PET Clin. 2018;13:383–93.

    Article  Google Scholar 

  58. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol. 2001;19:2797–803.

    Article  CAS  Google Scholar 

  59. Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O. The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer. 2006;107:2545–51.

    Article  Google Scholar 

  60. Aukema TS, Rutgers EJT, Vogel WV, Teertstra HJ, Oldenburg HS, Vrancken Peeters MTFD, et al. The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques. Eur J Surg Oncol. 2010;36:387–92.

    Article  CAS  Google Scholar 

  61. Evangelista L, Baretta Z, Vinante L, Cervino AR, Gregianin M, Ghiotto C, et al. Tumour markers and FDG PET/CT for prediction of disease relapse in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:293–301.

    Article  CAS  Google Scholar 

  62. Champion L, Brain E, Giraudet A-L, Le Stanc E, Wartski M, Edeline V, et al. Breast cancer recurrence diagnosis suspected on tumor marker rising. Cancer. 2011;117:1621–9.

    Article  Google Scholar 

  63. Solomayer EF, Diel IJ, Meyberg GC, Gollan C, Bastert G. Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat. 2000;59:271–8.

    Article  CAS  Google Scholar 

  64. Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341–58.

    Article  Google Scholar 

  65. Parihar AS, Sood A, Lukose TT, Seam RK, Mittal BR. Metabolic bone superscan in carcinoma breast with occult graves’ disease: looking beyond skeletal metastases. Indian J Nucl Med. 2018;33:145–7.

    Article  Google Scholar 

  66. Bartel TB, Kuruva M, Gnanasegaran G, Beheshti M, Cohen EJ, Weissman AF, et al. SNMMI procedure standard for bone scintigraphy 4.0. J Nucl Med Technol. 2018;46:398–404.

    Google Scholar 

  67. Hortobagyi GN, Libshitz HI, Seabold JE. Osseous metastases of breast cancer. Clinical, biochemical, radiographic, and scintigraphic evaluation of response to therapy. Cancer. 1984;53:577–82.

    Article  CAS  Google Scholar 

  68. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22:2942–53.

    Article  Google Scholar 

  69. Donohoe KJ, Cohen EJ, Giammarile F, Grady E, Greenspan BS, Henkin RE, et al. Appropriate use criteria for bone scintigraphy in prostate and breast cancer: summary and excerpts. J Nucl Med. 2017;58(4):14N–7N.

    Google Scholar 

  70. Janicek MJ, Hayes DF, Kaplan WD. Healing flare in skeletal metastases from breast cancer. Radiology. 1994;192:201–4.

    Article  CAS  Google Scholar 

  71. Sabbah N, Jackson T, Mosci C, Jamali M, Minamimoto R, Quon A, et al. 18F-sodium fluoride PET/CT in oncology: an atlas of SUVs. Clin Nucl Med. 2015;40:e228–31.

    Article  Google Scholar 

  72. Chakraborty D, Bhattacharya A, Mete UK, Mittal BR. Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med. 2013;38:616–21.

    Article  Google Scholar 

  73. Albertini JJ. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA. 1996;276:1818–22.

    Article  CAS  Google Scholar 

  74. Borgstein PJ, Pijpers R, Comans EF, Van Diest PJ, Boom RP, Meijer S. Sentinel lymph node biopsy in breast cancer: guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg. 1998;186:275–83.

    Article  CAS  Google Scholar 

  75. Lyman GH, Temin S, Edge SB, Newman LA, Turner RR, Weaver DL, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2014;32:1365–83.

    Article  Google Scholar 

  76. Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet. 1996;349:1864–7.

    Article  Google Scholar 

  77. Parihar AS, Bhattacharya A, Rathod R, Bakshi J, Vadi S, Mittal B. Imaging of the human lymphatic system: principles and practice of lymphoscintigraphy and sentinel lymph node imaging. J Nucl Med. 2018;59:1217.

    Google Scholar 

  78. Alazraki NP, Styblo T, Grant SF, Cohen C, Larsen T, Aarsvold JN. Sentinel node staging of early breast cancer using lymphoscintigraphy and the intraoperative gamma-detecting probe. Semin Nucl Med. 2000;30:56–64.

    Article  CAS  Google Scholar 

  79. Klimberg VS, Rubio IT, Henry R, Cowan C, Colvert M, Korourian S. Subareolar versus peritumoral injection for location of the sentinel lymph node. Ann Surg. 1999;229:860–5.

    Article  CAS  Google Scholar 

  80. Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Ashikaga T, et al. Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial. Lancet Oncol 2007;8:881–8.

    Google Scholar 

  81. Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, et al. Sentinel-lymph-node biopsy as a staging procedure in breast cancer: update of a randomised controlled study. Lancet Oncol. 2006;7:983–90.

    Article  Google Scholar 

  82. Sajid MS, Parampalli U, Haider Z, Bonomi R. Comparison of radioguided occult lesion localization (ROLL) and wire localization for non-palpable breast cancers: a meta-analysis. J Surg Oncol. 2012;105:852–8.

    Article  Google Scholar 

  83. Nadeem R, Chagla LS, Harris O, Desmond S, Thind R, Titterrell C, et al. Occult breast lesions: A comparison between radioguided occult lesion localisation (ROLL) vs wire-guided lumpectomy (WGL). Breast. 2005;14:283–9.

    Article  CAS  Google Scholar 

  84. Lavoué V, Nos C, Clough KB, Baghaie F, Zerbib E, Poulet B, et al. Simplified technique of radioguided occult lesion localization (ROLL) plus sentinel lymph node biopsy (SNOLL) in breast carcinoma. Ann Surg Oncol. 2008;15:2556–61.

    Article  Google Scholar 

  85. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82:1109–18.

    Article  CAS  Google Scholar 

  86. Walker CM, Saldaña DA, Gladish GW, Dicks DL, Kicska G, Mitsumori LM, et al. Cardiac complications of oncologic therapy. Radiographics. 2013;33:1801–15.

    Article  Google Scholar 

  87. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJS, Cleland JGF, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J. 2000;21:1387–96.

    Article  CAS  Google Scholar 

  88. Møgelvang J, Stokholm KH, Saunämaki K, Reimer A, Stubgaard M, Thomsen C, et al. Assessment of left ventricular volumes by magnetic resonance in comparison with radionuclide angiography, contrast angiography and echocardiography. Eur Heart J. 1992;13:1677–83.

    Article  Google Scholar 

  89. Moy L, Noz ME, Maguire GQ, Melsaether A, Deans AE, Murphy-Walcott AD, et al. Role of fusion of prone FDG-PET and magnetic resonance imaging of the breasts in the evaluation of breast cancer. Breast J. 2010;16:369–76.

    Google Scholar 

  90. Reiner CS, Stolzmann P, Husmann L, Burger IA, Hüllner MW, Schaefer NG, et al. Protocol requirements and diagnostic value of PET/MR imaging for liver metastasis detection. Eur J Nucl Med Mol Imaging. 2014;41:649–58.

    Article  Google Scholar 

  91. Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, et al. Comparison of whole-body 18F FDG PET/MR imaging and whole-body 18F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology. 2016;281:193–202.

    Article  Google Scholar 

  92. Sawicki LM, Grueneisen J, Schaarschmidt BM, Buchbender C, Nagarajah J, Umutlu L, et al. Evaluation of 18F-FDG PET/MRI, 18F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol. 2016;85:459–65.

    Article  Google Scholar 

  93. Kolesnikov-Gauthier H, Carpentier P, Depreux P, Vennin P, Caty A, Sulman C. Evaluation of toxicity and efficacy of 186Re-hydroxyethylidene diphosphonate in patients with painful bone metastases of prostate or breast cancer. J Nucl Med. 2000;41:1689–94.

    CAS  Google Scholar 

  94. Serafini AN. Therapy of metastatic bone pain. J Nucl Med. 2001;42:895–906.

    CAS  Google Scholar 

  95. Fuster D, Herranz R, Vidal-Sicart S, MuÑOZ M, Conill C, Mateos JJ, et al. Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun. 2000;21:623–6.

    Article  CAS  Google Scholar 

  96. Parihar AS, Ga A, Sood K, Seam RK, Kaushal V, Sood A, et al. Incidental detection of synchronous lung melanoma on 18F-FDG PET/CT in a patient with parotid gland myoepithelial carcinoma. Clin Nucl Med. 2018;43:127–9.

    Article  Google Scholar 

  97. Parihar AS, Mittal BR, Vadi SK, Sood A, Kumar R, Goni V. 18F-FDG PET/CT in isolated primary extraskeletal osteosarcoma. Clin Nucl Med. 2018;43:E463–4.

    Article  Google Scholar 

  98. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med. 2008;49:367–74.

    Article  Google Scholar 

  99. van Kruchten M, Glaudemans AWJM, de Vries EFJ, Schröder CP, de Vries EGE, Hospers GAP. Positron emission tomography of tumour [18F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy. Eur J Nucl Med Mol Imaging. 2015;42:1674–81.

    Article  Google Scholar 

  100. Kurland BF, Peterson LM, Lee JH, Schubert EK, Currin ER, Link JM, et al. Estrogen receptor binding (18F-FES PET) and glycolytic activity (18F-FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer. Clin Cancer Res. 2017;23:407–15.

    Article  CAS  Google Scholar 

  101. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9:16–32.

    Article  CAS  Google Scholar 

  102. Henry KE, Ulaner GA, Lewis JS. Human epidermal growth factor receptor 2-targeted PET/single- photon emission computed tomography imaging of breast cancer: noninvasive measurement of a biomarker integral to tumor treatment and prognosis. PET Clin. 2017;12:269–88.

    Article  Google Scholar 

  103. Paik S, Kim C, Wolmark N. HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med. 2008;358:1409–11.

    Article  CAS  Google Scholar 

  104. Ray GL, Baidoo KE, Keller LMM, Albert PS, Brechbiel MW, Milenic DE. Pre-clinical assessment of 177Lu-labeled trastuzumab targeting HER2 for treatment and management of cancer patients with disseminated intraperitoneal disease. Pharmaceuticals. 2011;5:1–15.

    Article  Google Scholar 

  105. Ulaner GA, Schuster DM. Amino acid metabolism as a target for breast cancer imaging. PET Clin. 2018;13:437–44.

    Article  Google Scholar 

  106. Tade FI, Cohen MA, Styblo TM, Odewole OA, Holbrook AI, Newell MS, et al. Anti-3-18F-FACBC (18F-Fluciclovine) PET/CT of breast cancer: an exploratory study. J Nucl Med. 2016;57:1357–63.

    Article  CAS  Google Scholar 

  107. Nieberler M, Reuning U, Reichart F, Notni J, Wester H-J, Schwaiger M, et al. Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel). 2017;9:116.

    Article  Google Scholar 

  108. Chen H, Niu G, Wu H, Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6:78–92.

    Article  CAS  Google Scholar 

  109. Parihar AS, Sood A, Kumar R, Bhusari P, Shukla J, Mittal BR. Novel use of 177Lu-DOTA-RGD2 in treatment of 68Ga-DOTA-RGD2-avid lesions in papillary thyroid cancer with TENIS. Eur J Nucl Med Mol Imaging. 2018;45:1836–7.

    Article  CAS  Google Scholar 

  110. Parihar AS, Mittal BR, Kumar R, Shukla J, Bhattacharya A. 68Ga-DOTA-RGD2 positron emission tomography/computed tomography in radioiodine refractory thyroid cancer: prospective comparison of diagnostic accuracy with 18F-FDG positron emission tomography/computed tomography and evaluation toward potential Theranostics. Thyroid. 2020;30:557–67.

    Article  CAS  Google Scholar 

  111. Parihar AS, Vadi SK, Mittal BR, Kumar R, Bal A, Singh SK. 68Ga-PSMA-HBED-CC-avid synchronous urinary bladder paraganglioma in a patient with metastatic prostate carcinoma. Clin Nucl Med. 2018;43:329–30.

    Article  Google Scholar 

  112. Parihar A, Singh H, Kumar R, Shukla J, Bhattacharya A, Mittal B. Pearls and pitfalls in 68Ga-PSMA PET/CT imaging – the ‘non-specificity’ issue. J Nucl Med. 2019;60(supplement 1):1144.

    Google Scholar 

  113. Parihar AS, Sood A, Mittal BR, Kumar R, Singh H, Dhatt SS. 68Ga-PSMA-HBED-CC PET/CT and 18F-FDG PET/CT in Ewing sarcoma. Clin Nucl Med. 2020;45(1):e57–8.

    Article  Google Scholar 

  114. Parihar AS, Mittal BR, Sood A, Basher RK, Singh G. 68Ga-prostate-specific membrane antigen PET/CT and 18F-FDG PET/CT of primary signet ring cell breast adenocarcinoma. Clin Nucl Med. 2018;43:414–6.

    Article  Google Scholar 

  115. Sathekge M, Lengana T, Modiselle M, Vorster M, Zeevaart JR, Maes A, et al. 68Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients. Eur J Nucl Med Mol Imaging. 2017;44:689–94.

    Article  CAS  Google Scholar 

  116. Ulaner GA, Goldman DA, Corben A, Lyashchenko SK, Gönen M, Lewis JS, et al. Prospective clinical trial of 18F-fluciclovine PET/CT for determining the response to neoadjuvant therapy in invasive ductal and invasive lobular breast cancers. J Nucl Med. 2017;58:1037–42.

    Article  CAS  Google Scholar 

  117. Cheng J, Lei L, Xu J, Sun Y, Zhang Y, Wang X, et al. 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med. 2013;54:333–40.

    Article  CAS  Google Scholar 

  118. Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res. 2005;65:10104–12.

    Article  CAS  Google Scholar 

  119. Dittmann H, Jusufoska A, Dohmen BM, Smyczek-Gargya B, Fersis N, Pritzkow M, et al. 3′-Deoxy-3′-[18F]fluorothymidine (FLT) uptake in breast cancer cells as a measure of proliferation after doxorubicin and docetaxel treatment. Nucl Med Biol. 2009;36:163–9.

    Article  CAS  Google Scholar 

  120. Greif JM, Pezzi CM, Klimberg SV, Bailey L, Zuraek M. Gender differences in breast cancer: analysis of 13,000 breast cancers in men from the national cancer data base. Ann Surg Oncol. 2012;19:3199–204.

    Article  Google Scholar 

  121. Giordano SH, Cohen DS, Buzdar AU, Perkins G, Hortobagyi GN. Breast carcinoma in men: a population-based study. Cancer. 2004;101:51–7.

    Article  Google Scholar 

  122. Ulaner GA, Juarez J, Riedl CC, Goldman DA. 18F-FDG PET/CT for systemic staging of newly diagnosed breast cancer in men. J Nucl Med. 2019;60:472–7.

    Article  CAS  Google Scholar 

  123. Vadi SK, Mittal BR, Sood A, Singh G, Bal A, Parihar AS, et al. Diagnostic and prognostic value of 18F-FDG PET/CT imaging in suspected recurrence of male breast cancer. Nucl Med Commun. 2019;40:63–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Bhattacharya DRM, DNB, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parihar, A.S., Bhattacharya, A. (2022). Role of Nuclear Medicine in Breast Cancer. In: Sharma, S.C., Mazumdar, A., Kaushik, R. (eds) Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-16-4546-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4546-4_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4545-7

  • Online ISBN: 978-981-16-4546-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics