Skip to main content

Conceptual Model for Measuring Complexity in Manufacturing Systems

  • Conference paper
  • First Online:
Proceedings of Third International Conference on Sustainable Computing

Abstract

Conceptual models have proven to be a technique that, from a point of view of the transmission of an idea, facilitates the elaboration of a coherent structure to support the visualization and understanding of a process. The objective of this article is to design a model that supports the application of mathematical models, providing relevant, structured and organized information and helping manufacturing decision makers with a greater procedural understanding. Methodologically, three views were constructed, one physical, functional and the other informational, in order to have clarity of the elements and characteristics in the measurement of complexity, from a subjective perspective with the complexity index (CXI) method and objectively with the Shannon’s entropy model. The findings provide answers to the hypotheses raised, which corroborate that the conceptual models support and ensure a greater understanding and comprehension for the measurement of complex scenarios. At the same time, the structured elaboration of a hybrid model based on heuristics of complexity indexes and entropic measurements is evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. McDuffie, K. Sethuraman, M. Fisher, Product variety and manufacturing performance: evidence from the international automotive assembly plant study. Manage. Sci. 42(3), 350–369 (1996). https://doi.org/10.2307/2634348

    Article  MATH  Google Scholar 

  2. C. Bozarth, D. Warsing, B. Flynn, E. Flynn, The impact of supply chain complexity on manufacturing plant performance. J. Oper. Manag. 27(1), 78–93 (2009). https://doi.org/10.1016/j.jom.2008.07.003

    Article  Google Scholar 

  3. I. Manuj, F. Sahin, A model of supply chain and supply chain decision making complexity. Int. J. Phys. Distrib. Logist. Manag. 41(5), 511–549 (2011). https://doi.org/10.1108/09600031111138844

    Article  Google Scholar 

  4. L. Salum, The cellular manufacturing layout problem. Int. J. Prod. Res. 38(5), 1053–1069 (2000). https://doi.org/10.1080/002075400189013

    Article  MATH  Google Scholar 

  5. F. Valero, F. Esteban, A. García, D. Perales, Propuesta de marco conceptual para el modelado del proceso de planificación colaborativa de operaciones en contextos de Redes de Suministro/Distribución (RdS/D), in XI Congreso de Ingeniería de Organización (2007), pp. 0873–0882

    Google Scholar 

  6. F. Lario, D. Pérez, Gestión de Redes de Suministro (GRdS): sus Tipologías y Clasificaciones. Modelos de Referencia Conceptuales y Analíticos, in IX Congreso de Ingeniería de Organización, Gijón (2005), p. 163

    Google Scholar 

  7. B. Wilson, Systems: Concepts, Methodologies and Applications (Wiley, New York, 1984)

    Google Scholar 

  8. G. Chryssolouris, Manufacturing Systems: Theory and Practice, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  9. S. Heragu, A. Kusiak, Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988). https://doi.org/10.1287/opre.36.2.258

    Article  Google Scholar 

  10. R. Meller, K. Gau, The facility layout problem: recent and emerging trends and perspectives. J. Manuf. Syst. 15(5), 351–366 (1996). https://doi.org/10.1287/opre.36.2.258

    Article  Google Scholar 

  11. S. Li, S. Rao, T. Ragu, B. Nathan, Development and validation of a measurement instrument for studying supply chain management practices. J. Oper. Manag. 23(6), 618–641 (2005). https://doi.org/10.1016/j.jom.2005.01.002

    Article  Google Scholar 

  12. G. Frizelle, E. Woodcock, Measuring complexity as an aid to developing operational strategy. Int. J. Oper. Prod. Manag. 15(5), 26–39 (1995). https://doi.org/10.1108/01443579510083640

    Article  Google Scholar 

  13. K. Efthymiou, A. Pagoropoulos, N. Papakostas, D. Mourtzis, G. Chryssolouris, Manufacturing systems complexity: an assessment of manufacturing performance indicators unpredictability. CIRP J. Manuf. Sci. Technol. 7(4), 324–334 (2014). https://doi.org/10.1016/j.cirpj.2014.07.003

    Article  Google Scholar 

  14. C. Vidal, M. Goetschalckx, Strategic production-distribution models: a critical review with emphasis on global supply chain models. Eur. J. Oper. Res. 98(1), 1–18 (1997)

    Google Scholar 

  15. J. Tang, D. Shee, T. Tang, A conceptual model for interactive buyer-supplier relationship in electronic commerce. Int. J. Inf. Manage. 21, 49–68 (2001)

    Article  Google Scholar 

  16. J. Hernández, J. Mula, F. Ferriols, R. Poler, A conceptual model for the production and transport planning process: an application to the automobile sector. Comput. Ind. 59(8), 842–852 (2008)

    Google Scholar 

  17. M. Perona, G. Miragliotta, Complexity management and supply chain performance assessment. A field study and a conceptual framework. Int. J. Prod. Econ. 90(1), 103–115 (2004). https://doi.org/10.1016/S0925-5273(02)00482-6

    Article  Google Scholar 

  18. M. Haumann, H. Westermann, S. Seifert, S. Butzer, Managing complexity: a methodology, exemplified by the industrial sector of remanufacturing, in Proceedings of the 5th International Swedish Production Symposium SPS, vol. 12 (2012), pp. 107–114

    Google Scholar 

  19. V. Modrak, D. Marton, Structural complexity of assembly supply chains: a theoretical framework. Procedia CIRP 7, 43–48 (2013). https://doi.org/10.1016/fj.procir.2013.05.008

    Article  MATH  Google Scholar 

  20. S. Mattsson, P. Gullander, A. Davidsson, Method for measuring production complexity, in 28th International Manufacturing Conference (2011)

    Google Scholar 

  21. D. Eckstein, M. Goellner, C. Blome, M. Henke, The performance impact of supply chain agility and supply chain adaptability: the moderating effect of product complexity. Int. J. Prod. Res. 53(10), 3028–3046 (2015)

    Google Scholar 

  22. R. Urbanic, W. ElMaraghy, Modeling of Manufacturing Process Complexity, vol. VII (2006)

    Google Scholar 

  23. M. De La Fuente, L. Lorenzo, A. Ortiz, Enterprise modelling methodology for forward and reverse supply chain flows integration. Comput. Ind. 61(7), 702–710 (2010)

    Article  Google Scholar 

  24. M. Alemany, M. Verdecho, F. Alarcón, Graphical modelling of the physical organization view for the collaborative planning process, in II ICIEIM, Burgos, 3–5 de Septiembre de 2008

    Google Scholar 

  25. B. Flynn, E. Flynn, Information-processing alternatives for coping with manufacturing environment complexity. Decis. Sci. 30(4), 1021–1052 (1999). https://doi.org/10.1111/j.1540-5915.1999.tb00917.x

    Article  Google Scholar 

  26. S. Sivadasan, J. Efstathiou, A. Calinescu, L. Huatuco, Advances on measuring the operational complexity of supplier–customer systems. Eur. J. Oper. Res. 171(1), 208–226 (2006). https://doi.org/10.1016/j.ejor.2004.08.032

  27. G. Schuh, Lean Innovation (Springer, Berlin, 2013)

    Book  Google Scholar 

  28. L. Gaio, F. Gino, E. Zaninotto, I sistemi di produzione (Edizioni Carocci, Roma, 2002)

    Google Scholar 

  29. N. Suh, A Theory of Complexity and Applications (Oxford University Press, Oxford, 2005)

    Google Scholar 

  30. N. Papakostas, K. Efthymiou, D. Mourtzis, G. Chryssolouris, Modelling the complexity of manufacturing systems using nonlinear dynamics approaches. CIRP Ann. Manuf. Technol. 58(1), 437–440 (2009). https://doi.org/10.1016/j.cirp.2009.03.032

  31. R. Cao, Introducción a la Simulación y a la Teoría de Colas (Ed. Netbiblo S. L. R., 2002)

    Google Scholar 

  32. A. Deshmukh, J. Talavage, M. Barash, Complexity in manufacturing systems. Part 1: Analysis of static complexity. IIE Trans. 30(7), 645–655 (1998). https://doi.org/10.1023/A:1007542328011

    Article  Google Scholar 

  33. G. Vidal, J. Hernández, Complexity in manufacturing systems: a literature review. Prod. Eng. 1–13 (2021)

    Google Scholar 

  34. G. Vidal, J. Hernández, Study of the effects of complexity on the manufacturing sector. Prod. Eng. 1–10 (2021)

    Google Scholar 

  35. J. Aelker, T. Bauernhansl, H. Ehm, Managing complexity in supply chains: a discussion of current approaches on the example of the semiconductor industry. Procedia CIRP 7, 79–84 (2013). https://doi.org/10.1016/j.procir.2013.05.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Herrera Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidal, G.H., Coronado-Hernández, J.R., Niebles, A.C.P. (2022). Conceptual Model for Measuring Complexity in Manufacturing Systems. In: Poonia, R.C., Singh, V., Singh Jat, D., Diván, M.J., Khan, M.S. (eds) Proceedings of Third International Conference on Sustainable Computing. Advances in Intelligent Systems and Computing, vol 1404. Springer, Singapore. https://doi.org/10.1007/978-981-16-4538-9_19

Download citation

Publish with us

Policies and ethics