Skip to main content

Optimization of Greenhouse Gas Emissions Through Simulation Modeling: Analysis and Interpretation

  • Chapter
  • First Online:
Greenhouse Gases: Sources, Sinks and Mitigation

Abstract

This chapter presents a brief review on the computational model used for the simulation and optimization of Greenhouse Gases (GHGs) for the abatement of climate change. The description of different types of model is given which are used for the simulation of GHGs to address the climate change. The detailed and extensive descriptions of the physical processes of climate change have been explained by a more sophisticated tool like general circulation model which are tested directly or indirectly through back-casting of historical climate data. These models are grounded theoretically and empirically with physical laws. These models are described to clear the significant uncertainties about the transportation of the greenhouse gases (GHGs) pollutants through the atmosphere and the effect of GHGs on the rainfall, sea level, atmospheric and oceanic temperature. The multi-equation computer models like integrated assessment models (IAMs) are also described for addressing climate change to evaluate the profits and cost of climate strategy options. These models answered the question like how we can avoid global warming at a lower cost. The different models are described in detail in the chapter which are used for the simulation of GHGs for curtailing the climate change. These models are addressing the need of transformation in the energy system, adoption of new technology like low-carbon technology, different scenario analyses and economic approaches for reducing the GHGs emissions in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman, Frank, Stephen J. DeCanio, Richard B. Howarth, and Kristen Sheeran. 2009. Limitations of integrated assessment models of climate change. Climatic Change 95 (3–4): 297–315.

    Article  CAS  Google Scholar 

  • Akhtar, Mohammad Khaled. 2011. A system dynamics based integrated assessment modelling of global-regional climate change: a model for analyzing the behaviour of the socialenergy- economy-climate system. Electronic Thesis and Dissertation Repository 331.

    Google Scholar 

  • Alcamo, Joseph, RW Shaw, and Leen Hordijk. 1991. “The RAINS model of acidification: science and strategies in Europe”.

    Google Scholar 

  • An, Jingjing, Da Yan, Tianzhen Hong, and Kaiyu Sun. 2017. A novel stochastic modeling method to simulate cooling loads in residential districts. Applied Energy 206: 134–149.

    Article  Google Scholar 

  • Aydinalp-Koksal, Merih, and V. Ismet Ugursal. 2008. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Applied Energy 85 (4): 271–296.

    Article  Google Scholar 

  • Blanc, Elodie, Kenneth Strzepek, Adam Schlosser, Henry Jacoby, Arthur Gueneau, Charles Fant, Sebastian Rausch, and John Reilly. 2014. Modeling US water resources under climate change. Earth’s Future 2 (4): 197–224.

    Article  Google Scholar 

  • Charlier, Dorothée, and Anna Risch. 2012. Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector. Energy Policy 46: 170–184.

    Article  Google Scholar 

  • Chen, Yixing, Tianzhen Hong, and Mary Ann Piette. 2017. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Applied Energy 205: 323–335.

    Article  Google Scholar 

  • Dong, Yan, Michael Hauschild, Hjalte Sørup, Rémi Rousselet, and Peter Fantke. 2019. Evaluating the monetary values of greenhouse gases emissions in life cycle impact assessment. Journal of Cleaner Production 209: 538–549.

    Article  Google Scholar 

  • Dortmans, Brady, William F. Langford, and Allan R. Willms. 2019. An energy balance model for paleoclimate transitions. Climate of the Past 15 (2).

    Google Scholar 

  • Dosio, Alessandro, and Hans-Jürgen Panitz. 2016. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Climate Dynamics 46 (5–6): 1599–1625.

    Article  Google Scholar 

  • Douville, H., F. Chauvin, S. Planton, J.-F. Royer, D. Salas-Melia, and S. Tyteca. 2002. Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Climate Dynamics 20 (1): 45–68.

    Article  Google Scholar 

  • Dowlatabadi, Hadi, and M. Granger Morgan. 1993a. Integrated assessment of climate change. Science 259 (5103): 1813–1815.

    Article  CAS  PubMed  Google Scholar 

  • ———. 1993b. A model framework for integrated studies of the climate problem. Energy Policy 21 (3): 209–221.

    Article  Google Scholar 

  • Edenhofer, Ottmar, Kai Lessmann, Claudia Kemfert, Michael Grubb, and Jonathan Kohler. 2006. Induced technological change: exploring its implications for the economics of atmospheric stabilization: Synthesis report from the innovation modeling comparison project. The Energy Journal (Special Issue# 1).

    Google Scholar 

  • Edmonds, J.A., M.A. Wise, R.D. Sands, R.A. Brown, and H. Kheshgi. 1996. Agriculture, land use, and commercial biomass energy. Richland, WA (United States): Pacific Northwest Lab.

    Book  Google Scholar 

  • Edmonds, Jae, Marshall Wise, Hugh Pitcher, Richard Richels, Tom Wigley, and Chris Maccracken. 1997. An integrated assessment of climate change and the accelerated introduction of advanced energy technologies-an application of MiniCAM 1.0. Mitigation and Adaptation Strategies for Global Change 1 (4): 311–339.

    Article  Google Scholar 

  • Edmonds, James A., M.A. Wise, and C.N. MacCracken. 1994. Advanced energy technologies and climate change: An analysis using the global change assessment model (GCAM). Richland, WA (United States): Pacific Northwest National Lab.(PNNL).

    Google Scholar 

  • Erhorn-Kluttig, H, H Erhorn, J Weber, S Wössner, and E Budde. 2013. The district energy concept adviser: A software tool from iea ecbcs annex 51 to support urban decision makers in planning district energy supply schemes. Sustainable Building Conference sb13 munich.

    Google Scholar 

  • Fiddaman, Thomas. 1998. A feedback-rich climate-economy model. 16th International Conference of the Systems Dynamics Society, Quebec.

    Google Scholar 

  • Fiddaman, Thomas S. 2002. Exploring policy options with a behavioral climate–economy model. System Dynamics Review: The Journal of the System Dynamics Society 18 (2): 243–267.

    Article  Google Scholar 

  • Fonseca, Jimeno A., Thuy-An Nguyen, Arno Schlueter, and Francois Marechal. 2016. City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. Energy and Buildings 113: 202–226.

    Article  Google Scholar 

  • Frame, David J., N.E. Faull, M.M. Joshi, and M.R. Allen. 2007. Probabilistic climate forecasts and inductive problems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1857): 1971–1992.

    Article  CAS  Google Scholar 

  • Gillingham, K.T., and K.L. Palmer. 2013. Bridging the energy efficiency gap: insights for policy from economic theory and empirical analysis. Environment for Development Discussion Paper-Resources for the Future (RFF). (13-02).

    Google Scholar 

  • Greenblatt, Jeffery B. 2015. Modeling California policy impacts on greenhouse gas emissions. Energy Policy 78: 158–172.

    Article  Google Scholar 

  • Happle, Gabriel, Jimeno A. Fonseca, and Arno Schlueter. 2018. A review on occupant behavior in urban building energy models. Energy and Buildings 174: 276–292.

    Article  Google Scholar 

  • Hare, W.L. 2012. A safe landing for the climate. In State of the World 2009, 39–55. Routledge.

    Google Scholar 

  • Hasan, Ala, Mika Vuolle, and Kai Sirén. 2008. Minimisation of life cycle cost of a detached house using combined simulation and optimisation. Building and Environment 43 (12): 2022–2034.

    Article  Google Scholar 

  • Hassler, John, and Per Krusell. 2012. Economics and climate change: integrated assessment in a multi-region world. Journal of the European Economic Association 10 (5): 974–1000.

    Article  Google Scholar 

  • Hedenus, Fredrik, Daniel Johansson, and Kristian Lindgren. 2013. A critical assessment of Energy-economy-climate models for policy analysis. Journal of Applied Economics and Business Research 3 (2): 118–132.

    Google Scholar 

  • Heeren, Niko, Martin Jakob, Gregor Martius, Nadja Gross, and Holger Wallbaum. 2013. A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renewable and sustainable energy reviews 20: 45–56.

    Article  Google Scholar 

  • Huebener, H., U. Cubasch, U. Langematz, T. Spangehl, F. Niehörster, I. Fast, and M. Kunze. 2007. Ensemble climate simulations using a fully coupled ocean–troposphere–stratosphere general circulation model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1857): 2089–2101.

    Article  CAS  Google Scholar 

  • Jebaraj, S., and S. Iniyan. 2006. A review of energy models. Renewable and Sustainable Energy Reviews 10 (4): 281–311.

    Article  Google Scholar 

  • Jin, Qian, and Mauro Overend. 2012. Facade renovation for a public building based on a whole-life value approach. Loughborough: First Building Simulation and Optimization Conference.

    Google Scholar 

  • Karl, Thomas R., and Kevin E. Trenberth. 2003. Modern global climate change. Science 302 (5651): 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  • Kazas, Georgios, Enrico Fabrizio, and Marco Perino. 2017. Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study. Applied Energy 193: 243–262.

    Article  Google Scholar 

  • Kelly, David L., and Charles D. Kolstad. 1999. Integrated assessment models for climate change control. International Yearbook of Environmental and Resource Economics 2000: 171–197.

    Google Scholar 

  • Kim, Son H., Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise. 2006. The ObjECTS framework for integrated assessment: hybrid modeling of transportation. The Energy Journal (Special Issue# 2).

    Google Scholar 

  • Kohler, Jonathan, Michael Grubb, David Popp, and Ottmar Edenhofer. 2006. The transition to endogenous technical change in climate-economy models: a technical overview to the innovation modeling comparison project. The Energy Journal (Special Issue# 1).

    Google Scholar 

  • Kriegler, E., J. Weyant, G. Blanford, L. Clarke, J. Edmonds, A. Fawcett, V. Krey, G. Luderer, K. Riahi, and R. Richels. 2013. The role of technology for climate stabilization: Overview of the EMF 27 study on energy system transition pathways under alternative climate policy regimes. Climatic Change.

    Google Scholar 

  • Lave, Lester B., and Hadi Dowlatabadi. 1993. Climate change: the effects of personal beliefs and scientific uncertainty. Environmental Science & Technology 27 (10): 1962–1972.

    Article  CAS  Google Scholar 

  • Li, Qinghua, Surojit Gupta, Ling Tang, Sean Quinn, Vahit Atakan, and Richard E. Riman. 2016. A novel strategy for carbon capture and sequestration by rHLPD processing. Frontiers in Energy Research 3: 53.

    Article  CAS  Google Scholar 

  • Mahone, Amber, Elaine Hart, Jim Williams, Sam Borgeson, Nancy Ryan, and Snuller Price. 2015. California pathways: ghg scenario results. Energy þEnvironmental Economics.

    Google Scholar 

  • Mastrucci, Alessio, Olivier Baume, Francesca Stazi, and Ulrich Leopold. 2014. Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy and Buildings 75: 358–367.

    Article  Google Scholar 

  • Matsuoka, Yuzuru, Tsuneyuki Morita, and Mikiko Kainuma. 2001. Integrated assessment model of climate change: the AIM approach. Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling: 339–361.

    Google Scholar 

  • McCollum, David L., Volker Krey, and Keywan Riahi. 2011. An integrated approach to energy sustainability. Nature Climate Change 1 (9): 428–429.

    Article  Google Scholar 

  • Mercure, Jean-Francois, Hector Pollitt, Neil R. Edwards, Philip B. Holden, Unnada Chewpreecha, Pablo Salas, Aileen Lam, Florian Knobloch, and Jorge E. Vinuales. 2018. Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strategy Reviews 20: 195–208.

    Article  Google Scholar 

  • Mitchell, Alanna. 2009. Sea sick: The global ocean in crisis: McClelland & Stewart Limited.

    Google Scholar 

  • Mitchell, John F.B., T.C. Johns, Jonathan M. Gregory, and S.F.B. Tett. 1995. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376 (6540): 501–504.

    Article  CAS  Google Scholar 

  • Morrison, Geoffrey M., Sonia Yeh, Anthony R. Eggert, Christopher Yang, James H. Nelson, Jeffery B. Greenblatt, Raphael Isaac, Mark Z. Jacobson, Josiah Johnston, and Daniel M. Kammen. 2015. Comparison of low-carbon pathways for California. Climatic Change 131 (4): 545–557.

    Article  Google Scholar 

  • Moss, Richard H., Jae A. Edmonds, Kathy A. Hibbard, Martin R. Manning, Steven K. Rose, Detlef P. Van Vuuren, Timothy R. Carter, Seita Emori, Mikiko Kainuma, and Tom Kram. 2010. The next generation of scenarios for climate change research and assessment. Nature 463 (7282): 747–756.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, James M., Ben B.B. Booth, Mat Collins, Glen R. Harris, David M.H. Sexton, and Mark J. Webb. 2007. A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1857): 1993–2028.

    Article  CAS  Google Scholar 

  • Naber, Elias, Rebekka Volk, and Frank Schultmann. 2017. From the building level energy performance assessment to the national level: How are uncertainties handled in building stock models. Procedia Engineering 180: 1443–1452.

    Article  Google Scholar 

  • Nashwan, Mohamed Salem, and Shamsuddin Shahid. 2020. A novel framework for selecting general circulation models based on the spatial patterns of climate. International Journal of Climatology.

    Google Scholar 

  • Nordhaus, William. 2013. Integrated economic and climate modeling. In Handbook of computable general equilibrium modeling, 1069–1131. Elsevier.

    Chapter  Google Scholar 

  • ———. 2018. Evolution of modeling of the economics of global warming: Changes in the DICE model, 1992–2017. Climatic Change 148 (4): 623–640.

    Article  Google Scholar 

  • Nordhaus, William D., and Zili Yang. 1996. A regional dynamic general-equilibrium model of alternative climate-change strategies. The American Economic Review: 741–765.

    Google Scholar 

  • Olofsson, Thomas, and T.M.I. Mahlia. 2012. Modeling and simulation of the energy use in an occupied residential building in cold climate. Applied Energy 91 (1): 432–438.

    Article  Google Scholar 

  • Pachauri, Shonali, Bas J. van Ruijven, Yu Nagai, Keywan Riahi, Detlef P. van Vuuren, Abeeku Brew-Hammond, and Nebojsa Nakicenovic. 2013. Pathways to achieve universal household access to modern energy by 2030. Environmental Research Letters 8 (2): 024015.

    Article  Google Scholar 

  • Parson, Edward A., and Karen Fisher-Vanden. 1997. Integrated assessment models of global climate change. Annual Review of Energy and the Environment 22 (1): 589–628.

    Article  Google Scholar 

  • Peterson, Sonja. 2006. Uncertainty and economic analysis of climate change: A survey of approaches and findings. Environmental Modeling & Assessment 11 (1): 1–17.

    Article  Google Scholar 

  • Popp, David. 2004. ENTICE: endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management 48 (1): 742–768.

    Article  Google Scholar 

  • Prentice, I. Colin, Wolfgang Cramer, Sandy P. Harrison, Rik Leemans, Robert A. Monserud, and Allen M. Solomon. 1992. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 91: 117–134.

    Article  Google Scholar 

  • Prinn, Ronald G. 2013. Development and application of earth system models. Proceedings of the National Academy of Sciences 110 (Supplement 1): 3673–3680.

    Article  CAS  Google Scholar 

  • Prinn, Ronald G, and Dana Hartley. 1992. Atmosphere, ocean, and land: Critical gaps in Earth system models.

    Google Scholar 

  • Prinn, Ronald, Henry Jacoby, Andrei Sokolov, Chien Wang, Xiangming Xiao, Zili Yang, R. Eckhaus, Stone Peter, D. Ellerman, and Jerry Melillo. 1999. Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change 41 (3-4): 469–546.

    Article  CAS  Google Scholar 

  • Prinn, Ronald, Sergey Paltsev, Andrei Sokolov, Marcus Sarofim, John Reilly, and Henry Jacoby. 2011. Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches. Climatic Change 104 (3-4): 515–537.

    Article  CAS  Google Scholar 

  • Quaghebeur, Mieke, Peter Nielsen, Liesbeth Horckmans, and Dirk Van Mechelen. 2015. Accelerated carbonation of steel slag compacts: development of high-strength construction materials. Frontiers in Energy Research 3: 52.

    Article  Google Scholar 

  • Ray, Aaron D., and Jessica Grannis. 2015. From planning to action: implementation of state climate change adaptation plans. Michigan Journal of Sustainability 3: 20150506.

    Article  Google Scholar 

  • Reinhart, Christoph, Dogan Timur, J. Alstan Jakubiec, Tarek Rakha, and Andrew Sang. 2013. Umi-an urban simulation environment for building energy use, daylighting and walkability. In 13th Conference of International Building Performance Simulation Association. Chambery: France.

    Google Scholar 

  • Remmen, Peter, Moritz Lauster, Michael Mans, Marcus Fuchs, Tanja Osterhage, and Dirk Müller. 2018. TEASER: an open tool for urban energy modelling of building stocks. Journal of Building Performance Simulation 11 (1): 84–98.

    Article  Google Scholar 

  • Rogelj, Joeri, David L. McCollum, Brian C. O’Neill, and Keywan Riahi. 2013. 2020 emissions levels required to limit warming to below 2° C. Nature Climate Change 3 (4): 405–412.

    Article  CAS  Google Scholar 

  • Rye, Craig D., and Tim Jackson. 2018. A review of EROEI-dynamics energy-transition models. Energy Policy 122: 260–272.

    Article  Google Scholar 

  • Sa’adi, Zulfaqar, Mohammed Sanusi Shiru, Shamsuddin Shahid, and Tarmizi Ismail. 2020. Selection of general circulation models for the projections of spatio-temporal changes in temperature of Borneo Island based on CMIP5. Theoretical and Applied Climatology 139 (1-2): 351–371.

    Article  Google Scholar 

  • Scafetta, Nicola. 2016. Problems in modeling and forecasting climate change: CMIP5 general circulation models versus a semi-empirical model based on natural oscillations. International Journal of Heat and Technology 34 (S2): S435–S442.

    Article  Google Scholar 

  • Schiefelbein, Jan, Amir Javadi, Moritz Lauster, Peter Remmen, Rita Streblow, and Dirk Müller. 2015. Development of a city information model to support data management and analysis of building energy systems within complex city districts. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale.

    Google Scholar 

  • Schlosser, C. Adam, Xiang Gao, Kenneth Strzepek, Andrei Sokolov, Chris E. Forest, Sirein Awadalla, and William Farmer. 2013. Quantifying the likelihood of regional climate change: a hybridized approach. Journal of Climate 26 (10): 3394–3414.

    Article  Google Scholar 

  • Scott, Michael J., Ronald D. Sands, Jae Edmonds, Albert M. Liebetrau, and David W. Engel. 1999. Uncertainty in integrated assessment models: modeling with MiniCAM 1.0. Energy Policy 27 (14): 855–879.

    Article  Google Scholar 

  • Shi, Yuhan, Wei Gong, Qingyun Duan, Jackson Charles, Cunde Xiao, and Heng Wang. 2019. How parameter specification of an Earth system model of intermediate complexity influences its climate simulations. Progress in Earth and Planetary Science 6 (1): 46.

    Article  Google Scholar 

  • Smit, Berend, Ah-Hyung Alissa Park, and Greeshma Gadikota. 2014. The grand challenges in carbon capture, utilization, and storage. Frontiers in Energy Research 2: 55.

    Article  Google Scholar 

  • Södergren, A. Helena, Adrian J. McDonald, and Gregory E. Bodeker. 2018. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. Climate Dynamics 51 (5-6): 1639–1658.

    Article  Google Scholar 

  • Stott, Peter A., and Chris E. Forest. 2007. Ensemble climate predictions using climate models and observational constraints. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1857): 2029–2052.

    Article  Google Scholar 

  • Strzepek, Kenneth, Adam Schlosser, Arthur Gueneau, Xiang Gao, Élodie Blanc, Charles Fant, Bilhuda Rasheed, and Henry D. Jacoby. 2013. Modeling water resource systems within the framework of the MIT Integrated Global System Model: IGSM-WRS. Journal of Advances in Modeling Earth Systems 5 (3): 638–653.

    Article  Google Scholar 

  • Stute, Martin, Amy Clement, and Gerrit Lohmann. 2001. Global climate models: Past, present, and future. Proceedings of the National Academy of Sciences 98 (19): 10529–10530.

    Article  CAS  Google Scholar 

  • Tavoni, Massimo, Elmar Kriegler, Keywan Riahi, Detlef P. Van Vuuren, Tino Aboumahboub, Alex Bowen, Katherine Calvin, Emanuele Campiglio, Tom Kober, and Jessica Jewell. 2015. Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Climate Change 5 (2): 119–126.

    Article  Google Scholar 

  • Train, Kenneth. 1986. Qualitative choice analysis: Theory, econometrics, and an application to automobile demand. Vol. 10. MIT press.

    Google Scholar 

  • Uprety, D.C., and P. Saxena. 2021. Technologies for green house gas assessment in crop studies. Springer.

    Google Scholar 

  • Van der Zwaan, Bob C.C., Reyer Gerlagh, and Leo Schrattenholzer. 2002. Endogenous technological change in climate change modelling. Energy Economics 24 (1): 1–19.

    Google Scholar 

  • van Vuuren, Detlef P., Jason Lowe, Elke Stehfest, Laila Gohar, Andries F. Hof, Chris Hope, Rachel Warren, Malte Meinshausen, and Gian-Kasper Plattner. 2011. How well do integrated assessment models simulate climate change? Climatic Change 104 (2): 255–285.

    Article  Google Scholar 

  • Van Vuuren, D.P., B. Eickhout, P.L. Lucas, and M.G.J. Den Elzen. 2006. Long-term multi-gas scenarios to stabilise radiative forcing-exploring costs and benefits within an integrated assessment framework. The Energy Journal (Special Issue# 3).

    Google Scholar 

  • Wang, Zheng, Jing Wu, Changxin Liu, and Gu. Gaoxiang. 2017. Integrated assessment models of climate change economics. Springer.

    Book  Google Scholar 

  • Weyant, John, Ogunlade Davidson, Hadi Dowlatabadi, Jae Edmonds, Grubb Michael, E.A. Parson, R. Richels, Jan Rotmans, P.R. Shukla, and Richard S.J. Tol. 1995. Integrated assessment of climate change: an overview and comparison of approaches and results. Climate Change 3.

    Google Scholar 

  • Wu, Wenchao, Tomoko Hasegawa, Haruka Ohashi, Naota Hanasaki, Jingyu Liu, Tetsuya Matsui, Shinichiro Fujimori, Toshihiko Masui, and Kiyoshi Takahashi. 2019. Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy 11 (9): 1041–1055.

    Google Scholar 

  • Yeh, Sonia, Christopher Yang, Michael Gibbs, David Roland-Holst, Jeffery Greenblatt, Amber Mahone, Dan Wei, Gregory Brinkman, Joshua Cunningham, and Anthony Eggert. 2016. A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California. Energy Strategy Reviews 13: 169–180.

    Article  Google Scholar 

  • Zhou, Yuyu, Leon Clarke, Jiyong Eom, Page Kyle, Pralit Patel, Son H. Kim, James Dirks, Erik Jensen, Ying Liu, and Jennie Rice. 2014. Modeling the effect of climate change on US state-level buildings energy demands in an integrated assessment framework. Applied Energy 113: 1077–1088.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraswati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saraswati (2022). Optimization of Greenhouse Gas Emissions Through Simulation Modeling: Analysis and Interpretation. In: Sonwani, S., Saxena, P. (eds) Greenhouse Gases: Sources, Sinks and Mitigation. Springer, Singapore. https://doi.org/10.1007/978-981-16-4482-5_7

Download citation

Publish with us

Policies and ethics