Skip to main content

Role of Electrocatalysts in Water Electrolysis

  • Living reference work entry
  • First Online:
Handbook of Energy Materials

Abstract

Water electrolysis is a perspective technology of hydrogen production, which requires only water and electricity as input resources. The cost of hydrogen produced by water electrolysis should be reduced to make this approach competitive with other technologies of hydrogen production, such as steam methane reforming and coal gasification. Electrocatalysts loaded on electrolyzer electrodes determine the large part of the cost of produced hydrogen because the amount of electricity consumed by electrolyzer per volume of produced hydrogen is defined by the efficiency of the catalysts. Moreover, noble metal-based electrocatalysts are the most expensive components of electrolyzers. From this point of view, the development of active and low-cost electrocatalysts is an essential prerequisite for achieving the efficient hydrogen production by water electrolysis.

This chapter starts with the basics of water electrolysis describing the principles of electrolyzers operation and reaction mechanisms of the two half-cell reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The decisive role of HER and OER electrocatalysts in elecrolyzer’s performance is emphasized. General approaches to catalytic activity increasing, as well as descriptors of catalytic activity for HER and OER, such as overpotential, Tafel slope, and exchange current density, are introduced. The chapter is devoted to advances in design and fabrication of electrocatalysts for HER and OER. Strategies in designing active sites ranging from single-crystal noble metals to single-atom catalysts are discussed. The connection between activity and stability of OER electrocatalysts is outlined and discussed in terms of adsorbate evolution and lattice oxygen-mediated mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrog. Energy 44, 15072 (2019)

    Article  CAS  Google Scholar 

  • M.E. Björketun, A.S. Bondarenko, B.L. Abrams, I. Chorkendorff, J. Rossmeisl, Phys. Chem. Chem. Phys. 12, 10536 (2010)

    Article  Google Scholar 

  • W.-F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. 49, 8896 (2013)

    Article  CAS  Google Scholar 

  • N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, G.A. Botton, X. Sun, Nat. Commun. 7, 13638 (2016)

    Article  CAS  Google Scholar 

  • J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H. Kristoffersen, M. Kuisma, A.H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. Olsen, V. Petzold, N.A. Romero, J. Stausholm-Møller, M. Strange, G.A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G.K.H. Madsen, R.M. Nieminen, J.K. Nørskov, M. Puska, T.T. Rantala, J. Schiøtz, K.S. Thygesen, K.W. Jacobsen, J. Phys. Condens. Matter 22, 253202 (2010)

    Article  CAS  Google Scholar 

  • Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 31, 1802880 (2019)

    Article  Google Scholar 

  • S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A.M. Mingers, W.T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K.J.J. Mayrhofer, M.T.M. Koper, S. Cherevko, Nat. Catal. 1, 508 (2018)

    Article  CAS  Google Scholar 

  • J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5, 909 (2006a)

    Article  CAS  Google Scholar 

  • J. Greeley, J.K. Nørskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, ChemPhysChem 7, 1032 (2006b)

    Article  CAS  Google Scholar 

  • S. Gutić, A. Dobrota, E. Fako, N. Skorodumova, N. López, I. Pašti, Catalysts 10, 290 (2020)

    Article  Google Scholar 

  • B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005)

    Article  CAS  Google Scholar 

  • I.J. Hsu, Y.C. Kimmel, X. Jiang, B.G. Willis, J.G. Chen, Chem. Commun. 48, 1063 (2012)

    Article  CAS  Google Scholar 

  • M.P. Hyman, J.W. Medlin, J. Phys. Chem. C 111, 17052 (2007)

    Article  CAS  Google Scholar 

  • T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 80(317), 100 (2007)

    Article  Google Scholar 

  • L.A. Kibler, ChemPhysChem 7, 985 (2006)

    Article  CAS  Google Scholar 

  • R.B. Levy, M. Boudart, Science 80(181), 547 (1973)

    Article  Google Scholar 

  • P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127, 14871 (2005)

    Article  CAS  Google Scholar 

  • M. Łukaszewski, Int. J. Electrochem. Sci. 4442 (2016)

    Google Scholar 

  • S. Ma, Y. Ma, B. Zhang, Y. Tian, Z. Jin, ACS Omega 6, 2001 (2021)

    Article  CAS  Google Scholar 

  • I.C. Man, H. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, J. Rossmeisl, ChemCatChem 3, 1159 (2011)

    Article  CAS  Google Scholar 

  • J.R. McKone, S.C. Marinescu, B.S. Brunschwig, J.R. Winkler, H.B. Gray, Chem. Sci. 5, 865 (2014)

    Article  CAS  Google Scholar 

  • J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152, J23 (2005)

    Article  Google Scholar 

  • R. Parsons, Trans. Faraday Soc. 54, 1053 (1958)

    Article  CAS  Google Scholar 

  • T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater. 7, 1601275 (2017)

    Article  Google Scholar 

  • Y. Shi, B. Zhang, Chem. Soc. Rev. 45, 1529 (2016)

    Article  CAS  Google Scholar 

  • Z. Shi, X. Wang, J. Ge, C. Liu, W. Xing, Nanoscale 12, 13249 (2020)

    Article  CAS  Google Scholar 

  • T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 5, 13801 (2015)

    Article  Google Scholar 

  • S. Shiva Kumar, V. Himabindu, Mater. Sci. Energy Technol. 2, 442 (2019)

    Google Scholar 

  • D.S. Strmcnik, D.V. Tripkovic, D. van der Vliet, K.-C. Chang, V. Komanicky, H. You, G. Karapetrov, J.P. Greeley, V.R. Stamenkovic, N.M. Marković, J. Am. Chem. Soc. 130, 15332 (2008)

    Article  CAS  Google Scholar 

  • S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 39, 163 (1972)

    Article  CAS  Google Scholar 

  • S. Wang, A. Lu, C.J. Zhong, Nano Converg. 8 (2021)

    Google Scholar 

  • M. Wohlfahrt-Mehrens, J. Heitbaum, J. Electroanal. Chem. Interfacial Electrochem. 237, 251 (1987)

    Article  CAS  Google Scholar 

  • H. Xu, D. Cheng, D. Cao, X.C. Zeng, Nat. Catal. 1, 339 (2018)

    Article  CAS  Google Scholar 

  • C.M. Zalitis, A.R. Kucernak, J. Sharman, E. Wright, J. Mater. Chem. A 5, 23328 (2017)

    Article  CAS  Google Scholar 

  • Q. Zhang, J. Guan, Adv. Funct. Mater. 30, 2000768 (2020)

    Article  CAS  Google Scholar 

  • R. Zhang, X. Wang, S. Yu, T. Wen, X. Zhu, F. Yang, X. Sun, X. Wang, W. Hu, Adv. Mater. 29, 1605502 (2017)

    Article  Google Scholar 

  • Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chemie Int. Ed. 54, 52 (2015)

    Article  CAS  Google Scholar 

  • C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chemie Int. Ed. 56, 13944 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Komanicky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Komanicky, V., Latyshev, V. (2022). Role of Electrocatalysts in Water Electrolysis. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics