Skip to main content

Evolution, Motor of the Changing Biosphere

  • Chapter
  • First Online:
Creative Complex Systems

Part of the book series: Creative Economy ((CRE))

Abstract

The biosphere, representing the entity of organisms, has changed since it started 3,490 million years before present. Biodiversity increased steadily in the Phanerozoic starting at 541 million years ago, and was interrupted by five mass extinctions. The motor of this increase is organismic evolution caused by changing environmental conditions. Microevolution explains changes in the species’ life span and diversification by speciation. Macroevolution is responsible for extreme changes during speciation leading to higher taxonomic units (genera and families). Macroevolution is the main motor for rapid recovering of environments after mass extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alroy, J. (2010). The shifting balance of diversity among major marine animal groups. Science, 329, 1191–1194.

    Google Scholar 

  • Benton, M. J. (2005). When life nearly died: The greatest mass extinction of all time. Thames & Hudson.

    Google Scholar 

  • Bettenstaedt, F., & Spiegler, D. (1982). Pleurostomella (Foram.) in der Unterkreide Nordwestdeutschlands. Geologisches Jahrbuch, A, 65, 445–479.

    Google Scholar 

  • Blackburn, T. J., Olsen, P. E., Bowring, S. A., McLean, N. M., Kent, D. V., Puffer, J., McHone, G., Rasbury, T., & Et-Touhami, M. (2013). Zircon U-Pb geochronology links the end-triassic extinction with the Central Atlantic Magmatic Province. Science, 340(6135), 941–945.

    Google Scholar 

  • Ceballos, G., Ehrlich, P. R., Barnosky, A. D., GarcĂ­a, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253.

    Google Scholar 

  • Cole, L. C. (1958). The ecosphere. Scientific American, 198, 83–96.

    Google Scholar 

  • de Lamarck, J. P. (1802). HydrogĂ©ologie. Agasse.

    Google Scholar 

  • de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.

    Google Scholar 

  • Eichhorn, M. P. (2016). Natural systems. The organization of life. Wiley Blackwell.

    Google Scholar 

  • Grabert, B. (1959). Phylogenetische Untersuchungen an Gaudryina und Spiroplectinata (Foram.), besonders aus dem nordwestdeutschen Apt und Alb. Abhhandlungen Der Senckenbergischen Naturforschenden Gesellschaft, 498, 1–71.

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, J. G., & Ogg, G. M. (2012). The geologic time scale 2012. Elsevier.

    Google Scholar 

  • Greenleave Leavitt, R. (1909). A vegetative mutant, and the principle of homeosis in plants. Botanical Gazette, 47, 30–68.

    Google Scholar 

  • Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics (4th ed.). Sinauer.

    Google Scholar 

  • Hautmann, M. (2020). What is macroevolution? Palaeontology, 63, 1–11.

    Google Scholar 

  • Hohenegger, J. (2007). Populationsgenetik und Mikropaläontologie – Möglichkeiten zur ĂśberprĂĽfung unterschiedlicher Modelle der Artbildung. Denisia, 20, 59–74.

    Google Scholar 

  • Hohenegger, J. (2012). Transferability of genomes to the next generation: The fundamental criterion for the biological species. Zootaxa, 3572, 11–17.

    Google Scholar 

  • Hohenegger, J. (2013) Species as the basic units in evolution and biodiversity: Recognition of species in the recent and geological past as exemplified by larger foraminifera. Gondwana Research, 25, 707–728.

    Google Scholar 

  • Hugget, R. J. (1999). Ecosphere, biosphere, or Gaia? What to call the global ecosystem. Global Ecology and Biogeography, 8, 425–431.

    Google Scholar 

  • Hull, D. L. (1976). Are species really individuals? Systematic Zoology, 25, 174–191.

    Google Scholar 

  • Hull, D. L. (1978). A matter of individuality. Philosophy of Science, 45, 335–360.

    Google Scholar 

  • Hunt, G. (2007). The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. PNAS, 104, 18404–18408.

    Google Scholar 

  • Hunt, G., Hopkins, M. J., & Lidgard, S. (2015). Simple versus complex models of trait evolution and stasis as a response to environmental change. PNAS, 112, 4885–4890.

    Google Scholar 

  • Jablonski, D. (2017a). Approaches to macroevolution: 2. Sorting of variation, some overarching issues, and general conclusions. Evolutionary Biology, 44, 451–473.

    Google Scholar 

  • Jablonski, D. (2017b). Approaches to macroevolution: 1. General concepts and origin of variation. Evolutionary Biology, 44, 424–450.

    Google Scholar 

  • Kerr, R. A. (1987). Milankovitch climate cycles through the ages: Earth’s orbital variations that bring on ice ages have been modulating climate for hundreds of millions of years. Science, 235(4792), 973–974.

    Google Scholar 

  • Kitcher, P. (1984). Species. Philosophy of Science, 51, 308–333.

    Google Scholar 

  • Linder, R. C., & Rieseberg, L. H. (2004). Reconstruction pattern of reticulate evolution in plants. American Journal of Botany, 91, 1700–1708.

    Google Scholar 

  • Lucae, S. Ch. (1816) Entwurf eines Systems der medicinischen Anthropologie. Zum Gebrauche beim Studium der Natur- und Heilkunde des menschlichen Organismus. Erster Band. Geschichte des vegetativen Lebens im Individuum. Varrentrapp.

    Google Scholar 

  • Malmgren, B. A., Berggren, W. A., & Lohmann G. P. (1983). Evidence of punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology, 9, 377–389.

    Google Scholar 

  • Malmgren, B. A., & Kennett, J. P. (1981). Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology, 74, 230–240.

    Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds.), Species: The units of biodiversity (pp. 381–424). Chapman and Hall.

    Google Scholar 

  • Mayr, E. (1982). Speciation and macroevolution. Evolution, 36, 1119–1132.

    Google Scholar 

  • Peter, I. S., & Davidson, E. H. (2015). Genomic control process: Development and evolution. Academic Press.

    Google Scholar 

  • Pigliucci, M., & Kaplan, J. (2006). Making sense of evolution. The conceptual foundations of evolutionary biology. The University of Chicago Press.

    Google Scholar 

  • Rebeiz, M., Patel, N. H., & Hinman, V. F. (2015). Unraveling the tangled skein: The evolution of transcriptional regulatory networks in development. Annual Review of Genomics and Human Genetics, 16, 103–131.

    Google Scholar 

  • Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W. et al. (2010). The Chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science, 327(5970), 1214–1218.

    Google Scholar 

  • Si, W., Berggren, W. A., & Aubry, M. P. (2018). Mosaic evolution in the middle Miocene planktonic foraminifera Fohsella lineage. Paleobiology, 44(2), 263–272.

    Google Scholar 

  • Simmons, D. (2018). Loss of tropical forests makes climate change worse. Yale Climate Connections (online).

    Google Scholar 

  • Skinner, M. K. (2015). Environmental epigenetics and a unified theory of the molecular aspects of evolution: A neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biology and Evolution, 7(5), 1296–1302.

    Google Scholar 

  • Solbrig, O. T., & Solbrig, D. J. (1979). The introduction to population biology and evolution. Addison-Wesley Publishing Company.

    Google Scholar 

  • Splitter, L. J. (1988). Species and identity. Philosophy of Science, 55, 323–348.

    Google Scholar 

  • Suess, E. (1875). Die Entstehung der Alpen. BraumĂĽller.

    Google Scholar 

  • Sylvester-Bradley, P. C. (1977). Biostratigraphical tests of evolutionary theory. In E. G. Kaufmann & J. E. Hazel (Eds.), Concepts and methods in biostratigraphy (pp. 41–63). Dowden, Hutchinson and Ross.

    Google Scholar 

  • Teilhard de Chardin. (1957). La Vision du PassĂ©. Éditions du Seuil.

    Google Scholar 

  • van der Pluijm, B. A., & Marshak, S. (2004). Earth structure—An introduction to structural geology and tectonics (2nd ed.). W.W. Norton.

    Google Scholar 

  • van Valen, L. (1976). Ecological species, multispecies, and oaks. Taxon, 25, 233–239.

    Google Scholar 

  • Vernadsky, V. I. (1926). Biosfera. Nauchnoe khimiko-technicheskoye izdatel’stvo.

    Google Scholar 

  • Veron, J. E. N. (1995) Corals in space and time. The biogeography and evolution of the Scleratinia. Comstock/Cornell.

    Google Scholar 

  • Wright, S. (1967). Surfaces” of selective value. PNAS, 58, 165–172.

    Google Scholar 

  • Zar, J. H. (2010). Biostatistical analysis (5th ed.). Pearson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Hohenegger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hohenegger, J. (2021). Evolution, Motor of the Changing Biosphere. In: Nishimura, K., Murase, M., Yoshimura, K. (eds) Creative Complex Systems. Creative Economy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4457-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4457-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4456-6

  • Online ISBN: 978-981-16-4457-3

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics