Skip to main content

Nanocarriers: An Advanced and Highly Effective Approach for Targeting Chronic Lung Diseases

  • Chapter
  • First Online:
Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases

Abstract

With aging communities, respiratory disorders are creating an alarming situation due to the scarcity of facilities and socio-medical insurances. Among these, the CLDs are expected to be among the top four causes of death across the globe. The conventional management for these diseases includes strategies manipulating miRNA, siRNA, shRNA and drugs used in the treatment.

As these require longer, sometimes lifelong treatment, there is an urgent need to formulate strategies to reduce toxicity arising from such strategies. With the advancement of knowledge and technologies, it is now known that small-sized particles result in better distribution and surface area to volume ratio. This has dawned on an era of nanotechnological research and development and their applications in the field of therapeutics.

As a finer approach, nanoscale transports, of different types like liposomes, dendrimers, quantum dots, for targeted drug delivery have stabilized themselves quite effectively in the pharmaceutical therapy as discussed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CILD:

Chronic inflammatory lung Diseases

CLD:

Chronic lung diseases

CNT:

Carbon nanotubes

COPD:

Chronic obstructive pulmonary disease

DNA:

Deoxyribonucleic acid

IPF:

Idiopathic pulmonary fibrosis

MWNTs:

Multi-walled nanotubes

PLGA:

Poly(lactic-co-glycolic) acid

QDs:

Quantum dots

SLNs:

Solid lipid nanoparticles

SWNTs:

Single-walled nanotubes

TPP:

Tripolyphosphate

References

  • Adler-Moore J, Proffitt RT (2002) AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrobial Chemother 49(Suppl. 1):21–30

    Article  CAS  Google Scholar 

  • Ahmad Z, Shah A, Siddiq M, Kraatz HB (2014) Polymeric micelles as drug delivery vehicles. RSC Adv 4(33):17028–17038

    Article  CAS  Google Scholar 

  • Ait-Oudhia S, Mager DE, Straubinger RM (2014) Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics 6(1):137–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Physica E 25(1):1–12

    Article  CAS  Google Scholar 

  • Baker KE, Bonvini SJ, Donovan C, Foong RE, Han B, Jha A, Shaifta Y, Smit M, Johnson JR, Moir LM (2014) Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 29(2):181–198

    Article  CAS  PubMed  Google Scholar 

  • Basu P (2003) News feature: technologies that deliver

    Google Scholar 

  • Beck-Broichsitter M, Ruppert C, Schmehl T, Guenther A, Betz T, Bakowsky U, Seeger W, Kissel T, Gessler T (2011) Biophysical investigation of pulmonary surfactant surface properties upon contact with polymeric nanoparticles in vitro. Nanomedicine 7(3):341–350

    Article  CAS  PubMed  Google Scholar 

  • Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB, Horta BA (2015a) Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 60:34–42

    Article  CAS  PubMed  Google Scholar 

  • Bellini RG, Guimarães AP, Pacheco MA, Dias DM, Furtado VR, de Alencastro RB, Horta BA (2015b) Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model 60:34–42

    Article  CAS  PubMed  Google Scholar 

  • Bhandari KH, Newa M, Yoon SI, Kim JS, Kim DD, Kim JA, Yoo BK, Woo JS, Lyoo WS, Choi JY, Lim HT (2007) Evaluation of skin permeation and accumulation profiles of ketorolac fatty esters. J Pharm Sci 10(3):278–287

    CAS  Google Scholar 

  • Bharatwaj B, Mohammad AK, Dimovski R, Cassio FL, Bazito RC, Conti D, Fu Q, Reineke J, da Rocha SR (2015) Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Mol Pharm 12(3):826–838

    Article  CAS  PubMed  Google Scholar 

  • Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF (2009) Colloidal soft matter as drug delivery system. J Pharm Sci 98(1):1–42

    Article  CAS  PubMed  Google Scholar 

  • Bosi S, Da Ros T, Castellano S, Banfi E, Prato M (2000) Antimycobacterial activity of ionic fullerene derivatives. Bioorg Med Chem Lett 10(10):1043–1045

    Article  CAS  PubMed  Google Scholar 

  • Bruesewitz C, Funke A, Kuhland U, Wagner T, Lipp R (2006) Comparison of permeation enhancing strategies for an oral factor Xa inhibitor using the Caco-2 cell monolayer model. Eur J Pharm Biopharm 64(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W, Liu J (2008) Polyhydroxylated fullerene derivative C60 (OH) 24 prevents mitochondrial dysfunction and oxidative damage in an MPP+‐induced cellular model of Parkinson's disease. J Neurosci Res 86(16):3622–3634

    Article  CAS  PubMed  Google Scholar 

  • Carvalho TC, Peters JI, Williams RO III (2011) Influence of particle size on regional lung deposition–what evidence is there? Int J Pharm 406(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Chang HI, Yeh MK (2012) Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 7:49

    CAS  PubMed  Google Scholar 

  • Chono S, Tanino T, Seki T, Morimoto K (2006) Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J Drug Target 14(8):557–566

    Article  CAS  PubMed  Google Scholar 

  • Chow AH, Tong HH, Chattopadhyay P, Shekunov BY (2007) Particle engineering for pulmonary drug delivery. Pharm Res 24(3):411–437

    Article  CAS  PubMed  Google Scholar 

  • Chung CY, Yang JT, Kuo YC (2013) Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats. Biomaterials 34(37):9717–9727

    Article  CAS  PubMed  Google Scholar 

  • Cipolla D, Gonda I, Chan HK (2013) Liposomal formulations for inhalation. Ther Deliv 4(8):1047–1072

    Article  CAS  PubMed  Google Scholar 

  • Cruz AA (2007) Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organization

    Google Scholar 

  • Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K (2012) New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Int J Nanomedicine 7:5475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durham AL, Caramori G, Chung KF, Adcock IM (2016a) Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res 167(1):192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durham AL, Caramori G, Chung KF, Adcock IM (2016b) Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res 167(1):192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhissi AMA, Islam MA, Arafat B, Taylor M, Ahmed W (2010a) Development and characterisation of freeze-dried liposomes containing two anti-asthma drugs. Micro Nano Lett 5(3):184–188

    Article  CAS  Google Scholar 

  • Elhissi AMA, Islam MA, Arafat B, Taylor M, Ahmed W (2010b) Development and characterisation of freeze-dried liposomes containing two anti-asthma drugs. Micro Nano Lett 5(3):184–188

    Article  CAS  Google Scholar 

  • Flaherty KR, Andrei AC, King TE Jr, Raghu G, Colby TV, Wells A, Bassily N, Brown K, Du Bois R, Flint A, Gay SE (2007) Idiopathic interstitial pneumonia: do community and academic physicians agree on diagnosis? Am J Respir Crit Care Med 175(10):1054–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas JRA (2005) Nanomed: Nanotechnol Biol Med 1:2–9

    Article  CAS  Google Scholar 

  • Fujita Y, Takeshita F, Kuwano K, Ochiya T (2013) RNAi therapeutic platforms for lung diseases. Pharmaceuticals 6(2):223–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenha A, Seijo B, Remunán-López C (2005) Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci 25(4–5):427–437

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Hatoum H, Dy GK (2014) First line treatment of advanced non-small-cell lung cancer–specific focus on albumin bound paclitaxel. Int J Nanomedicine 9:209

    CAS  PubMed  Google Scholar 

  • Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM (2006) Global burden of COPD: systematic review and meta-analysis. Eur Respir J 28(3):523–532

    Article  CAS  PubMed  Google Scholar 

  • Hoesel LM, Flierl MA, Niederbichler AD, Rittirsch D, McClintock SD, Reuben JS, Pianko MJ, Stone W, Yang H, Smith M, Sarma JV (2008) Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. Antioxid Redox Signal 10(5):963–972

    Article  CAS  Google Scholar 

  • Hsu CH, Jay M, Bummer PM, Lehmler HJ (2003) Chemical stability of esters of nicotinic acid intended for pulmonary administration by liquid ventilation. Pharm Res 20(6):918–925

    Article  CAS  PubMed  Google Scholar 

  • Iga AM, Robertson JH, Winslet MC, Seifalian AM (2007) Clinical potential of quantum dots. BioMed Res Int 2007

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP, Kannan RM (2010a) In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 399(1–2):140–147

    Article  CAS  PubMed  Google Scholar 

  • Inapagolla R, Guru BR, Kurtoglu YE, Gao X, Lieh-Lai M, Bassett DJP, Kannan RM (2010b) In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 399(1–2):140–147

    Article  CAS  PubMed  Google Scholar 

  • Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H (2011) Beclomethasone-loaded lipidic nanocarriers for pulmonary drug delivery: preparation, characterization and in vitro drug release. J Nanosci Nanotechnol 11(3):1841–1851

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Yang Z, Jiang W, Geng C, Gong M, Xiao H, Wang Z, Cheng L (2008) Antiviral activity of nano carbon fullerene lipidosome against influenza virus in vitro. J Huazhong Univ Sci Technolog Med Sci 28(3):243–246

    Article  PubMed  CAS  Google Scholar 

  • Jo HE, Corte TJ, Moodley Y, Levin K, Westall G, Hopkins P, Chambers D, Glaspole I (2016) Evaluating the interstitial lung disease multidisciplinary meeting: a survey of expert centres. BMC Pulmonary Med 16(1):22

    Article  Google Scholar 

  • Joo KI, Xiao L, Liu S, Liu Y, Lee CL, Conti PS, Wong MK, Li Z, Wang P (2013) Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials 34(12):3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi M, Misra A (2001) Pulmonary disposition of budesonide from liposomal dry powder inhaler. Methods Find Exp Clin Pharmacol 23(10):531–536

    Article  CAS  PubMed  Google Scholar 

  • Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJ (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26

    Article  CAS  PubMed  Google Scholar 

  • Karn PR, Vanić Z, Pepić I, Škalko-Basnet N (2011) Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Dev Ind Pharm 37(4):482–488

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Hyeon T (2013) Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25(1):012001

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W, Hahn SK (2018) Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv Mater 30(10):1701460

    Article  CAS  Google Scholar 

  • Kleemann E, Schmehl T, Gessler T, Bakowsky U, Kissel T, Seeger W (2007) Iloprost-containing liposomes for aerosol application in pulmonary arterial hypertension: formulation aspects and stability. Pharm Res 24(2):277–287

    Article  CAS  PubMed  Google Scholar 

  • Konduri KS, Nandedkar S, Düzgünes N, Suzara V, Artwohl J, Bunte R, Gangadharam PR (2003) Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 111(2):321–327

    Article  CAS  PubMed  Google Scholar 

  • Konduri KS, Nandedkar S, Rickaby DA, Düzgüneş N, Gangadharam PR (2005) The use of sterically stabilized liposomes to treat asthma. In: Methods in enzymology, vol 391. Academic Press, pp 413–427

    Google Scholar 

  • Lee VH (2004) Nanotechnology: challenging the limit of creativity in targeted drug delivery. Adv Drug Deliv Rev 11(56):1527–1528

    Article  CAS  Google Scholar 

  • Lee C, Choi JS, Kim I, Oh KT, Lee ES, Park ES, Lee KC, Youn YS (2013) Long-acting inhalable chitosan-coated poly (lactic-co-glycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes. Int J Nanomed 8:2975

    Google Scholar 

  • Lee SJ, Lee A, Hwang SR, Park JS, Jang J, Huh MS, Jo DG, Yoon SY, Byun Y, Kim SH, Kwon IC (2014) TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 22(2):397–408

    Article  CAS  PubMed  Google Scholar 

  • Lehmler HJ, Xu L, Vyas SM, Ojogun VA, Knutson BL, Ludewig G (2008) Synthesis, physicochemical properties and in vitro cytotoxicity of nicotinic acid ester prodrugs intended for pulmonary delivery using perfluorooctyl bromide as vehicle. Int J Pharm 353(1-2):35–44

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356(1-2):333–344

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fang J, Kim YJ, Wong MK, Wang P (2014) Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm 11(5):1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Shi J, Dai Q, Yin X, Zhang X, Zheng A (2015a) In-vitro and in-vivo evaluation of ciprofloxacin liposomes for pulmonary administration. Drug Dev Ind Pharm 41(2):272–278

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Shi J, Dai Q, Yin X, Zhang X, Zheng A (2015b) In-vitro and in-vivo evaluation of ciprofloxacin liposomes for pulmonary administration. Drug Dev Ind Pharm 41(2):272–278

    Article  CAS  PubMed  Google Scholar 

  • Malcolmson RJ, Embleton JK (1998) Dry powder formulations for pulmonary delivery. Pharm Sci Technol Today 1(9):394–398

    Article  CAS  Google Scholar 

  • Mannino DM, Kiri VA (2006) Changing the burden of COPD mortality. Int J Chronic Obstruct Pulmonary Dis 1(3):219

    Google Scholar 

  • Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29(26):3561–3573

    Article  CAS  PubMed  Google Scholar 

  • Masoli M, Fabian D, Holt S, Beasley R, Global Initiative for Asthma (GINA) Program (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59(5):469–478

    Article  PubMed  Google Scholar 

  • Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  • Matsuo Y, Ishihara T, Ishizaki J, Miyamoto KI, Higaki M, Yamashita N (2009) Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol 260(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • McLendon JM, Joshi SR, Sparks J, Matar M, Fewell JG, Abe K, Oka M, McMurtry IF, Gerthoffer WT (2015) Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J Control Release 210:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KC (2014) Diagnosis and management of interstitial lung disease. Transl Respir Med 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghaddam PH, Ramezani V, Esfandi E, Vatanara A, Nabi-Meibodi M, Darabi M, Gilani K, Najafabadi AR (2013) Development of a nano–micro carrier system for sustained pulmonary delivery of clarithromycin. Powder Technol 239:478–483

    Article  CAS  Google Scholar 

  • Montuschi P, Malerba M, Santini G, Miravitlles M (2014) Pharmacological treatment of chronic obstructive pulmonary disease: from evidence-based medicine to phenotyping. Drug Discov Today 19(12):1928–1935

    Article  PubMed  Google Scholar 

  • Mosgoeller W, Prassl R, Zimmer A (2012) Nanoparticle-mediated treatment of pulmonary arterial hypertension. In: Methods in enzymology, vol 508. Academic Press, pp 325–354

    Google Scholar 

  • Mroz P, Pawlak A, Satti M, Lee H, Wharton T, Gali H, Sarna T, Hamblin MR (2007) Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism. Free Radic Biol Med 43(5):711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47(1):3–19

    Article  PubMed  Google Scholar 

  • Murata M, Yonamine T, Tanaka S, Tahara K, Tozuka Y, Takeuchi H (2013) Surface modification of liposomes using polymer-wheat germ agglutinin conjugates to improve the absorption of peptide drugs by pulmonary administration. J Pharm Sci 102(4):1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Absar S, Patel B, Ahsan F (2014) Starch-coated magnetic liposomes as an inhalable carrier for accumulation of fasudil in the pulmonary vasculature. Int J Pharm 464(1-2):185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G (2016) Accumulating nanoparticles by EPR: a route of no return. J Control Release 238:58–70

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B (2003a) Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52(6):981–986

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B (2003b) Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother 52(6):981–986

    Article  CAS  PubMed  Google Scholar 

  • Paranjpe M, Neuhaus V, Finke JH, Richter C, Gothsch T, Kwade A, Büttgenbach S, Braun A, Müller-Goymann CC (2013) In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles. Inhal Toxicol 25(9):536–543

    Article  CAS  PubMed  Google Scholar 

  • Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plank H, Zimmer A (2011) Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm 419(1–2):329–338

    Article  CAS  PubMed  Google Scholar 

  • Park S, Jeong EJ, Lee J, Rhim T, Lee SK, Lee KY (2013a) Preparation and characterization of nonaarginine-modified chitosan nanoparticles for siRNA delivery. Carbohydr Polym 92(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Park CW, Li X, Vogt FG, Hayes D Jr, Zwischenberger JB, Park ES, Mansour HM (2013b) Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. Int J Pharm 455(1–2):374–392

    Article  CAS  PubMed  Google Scholar 

  • Pilcer G, Rosière R, Traina K, Sebti T, Vanderbist F, Amighi K (2013) New co-spray-dried tobramycin nanoparticles-clarithromycin inhaled powder systems for lung infection therapy in cystic fibrosis patients. J Pharm Sci 102(6):1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro M, Lúcio M, Lima JL, Reis S (2011) Liposomes as drug delivery systems for the treatment of TB. Nanomedicine 6(8):1413–1428

    Article  CAS  PubMed  Google Scholar 

  • Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533(1-3):341–350

    Article  CAS  PubMed  Google Scholar 

  • Pulmaquin Website Source (n.d.). Available online: http://investor.aradigm.com/releasedetail.cfm?releaseid=630968 (accessed on 17 July 2020)

  • Reilly RM (2007) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J Nucl Med 48(7):1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Ruppert C, Schmidt R, Grimminger F, Suzuki Y, Seeger W, Lehr CM, Günther A (2002) Chemical coupling of a monoclonal antisurfactant protein-B antibody to human urokinase for targeting surfactant-incorporating alveolar fibrin. Bioconjug Chem 13(4):804–811

    Article  CAS  PubMed  Google Scholar 

  • Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ (2013a) Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm 10(8):2986–2995

    Article  CAS  PubMed  Google Scholar 

  • Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ (2013b) Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm 10(8):2986–2995

    Article  CAS  PubMed  Google Scholar 

  • Sandri G, Poggi P, Bonferoni MC, Rossi S, Ferrari F, Caramella C (2006) Histological evaluation of buccal penetration enhancement properties of chitosan and trimethyl chitosan. J Pharm Pharmacol 58(10):1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Schiffelers RM, Bakker-Woudenberg IA, Storm G (2000) Localization of sterically stabilized liposomes in experimental rat Klebsiella pneumoniae pneumonia: dependence on circulation kinetics and presence of poly (ethylene) glycol coating. Biochim Biophys Acta (BBA)-Biomembr 1468(1-2):253–261

    Article  CAS  Google Scholar 

  • Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M (2013) Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine 8(3):449–467

    Article  PubMed  CAS  Google Scholar 

  • Semendyayeva, O., Monogarova, N., Gavrisyk, V., Merenkova, E. and Leshenko, S., 2012. Surgical lung biopsy-gold standard for diagnosis of idiopathic interstitial pneumonia?

    Google Scholar 

  • Shahidian A, Afshar H, Habibi MR, Ghassemi M (2016) Therapeutic nanostructures: application of mechanical engineering in drug delivery. In: Nanoarchitectonics for smart delivery and drug targeting, p 1

    Google Scholar 

  • Sharma HS, Ali SF, Dong W, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T (2007) Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci 1122(1):197–218

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Somavarapu S, Colombani A, Govind N, Taylor KM (2013) Nebulised siRNA encapsulated crosslinked chitosan nanoparticles for pulmonary delivery. Int J Pharm 455(1-2):241–247

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Plumley CJ, Berkland C (2007) Biodegradable nanoparticle flocculates for dry powder aerosol formulation. Langmuir 23(22):10897–10901

    Article  CAS  PubMed  Google Scholar 

  • Silva AL, Santos RS, Xisto DG, Alonso SDV, Morales MM, Rocco PR (2013) Nanoparticle-based therapy for respiratory diseases. An Acad Bras Cienc 85(1):137–146

    Article  PubMed  Google Scholar 

  • Srinivasan AR, Shoyele SA (2013) Self-associated submicron IgG1 particles for pulmonary delivery: effects of non-ionic surfactants on size, shape, stability, and aerosol performance. AAPS PharmSciTech 14(1):200–210

    Article  CAS  PubMed  Google Scholar 

  • Stella VJ, Nti-Addae KW (2007) Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 59(7):677–694

    Article  CAS  PubMed  Google Scholar 

  • Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25(12):563–570

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Sugihara H (2010) Absorption of calcitonin in oral and pulmonary administration with polymer-coated liposomes. Yakugaku Zasshi: J Pharm Soc Japan 130(9):1135–1142

    Article  CAS  Google Scholar 

  • Tang BC, Fu J, Watkins DN, Hanes J (2010) Enhanced efficacy of local etoposide delivery by poly (ether-anhydride) particles against small cell lung cancer in vivo. Biomaterials 31(2):339–344

    Article  CAS  PubMed  Google Scholar 

  • Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, Hamblin MR (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12(10):1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todoroff J, Vanbever R (2011) Fate of nanomedicines in the lungs. Curr Opin Colloid Interface Sci 16(3):246–254

    Article  CAS  Google Scholar 

  • Tomoda K, Ohkoshi T, Hirota K, Sonavane GS, Nakajima T, Terada H, Komuro M, Kitazato K, Makino K (2009) Preparation and properties of inhalable nanocomposite particles for treatment of lung cancer. Colloids Surf B: Biointerfaces 71(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Trapani A, Di Gioia S, Ditaranto N, Cioffi N, Goycoolea FM, Carbone A, Garcia-Fuentes M, Conese M, Alonso MJ (2013) Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 447(1–2):115–123

    Article  CAS  PubMed  Google Scholar 

  • Trivedi R, Redente EF, Thakur A, Riches DW, Kompella UB (2012a) Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology 23(50):505101

    Article  PubMed  CAS  Google Scholar 

  • Trivedi R, Redente EF, Thakur A, Riches DW, Kompella UB (2012b) Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology 23(50):505101

    Article  PubMed  CAS  Google Scholar 

  • Ungaro F, d'Angelo I, Coletta C, di Villa Bianca RDE, Sorrentino R, Perfetto B, Tufano MA, Miro A, La Rotonda MI, Quaglia F (2012) Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Control Release 157(1):149–159

    Article  CAS  PubMed  Google Scholar 

  • Vahed SZ, Salehi R, Davaran S, Sharifi S (2017) Liposome-based drug co-delivery systems in cancer cells. Mater Sci Eng C 71:1327–1341

    Article  CAS  Google Scholar 

  • Varshosaz J, Ghaffari S, Mirshojaei SF, Jafarian A, Atyabi F, Kobarfard F, Azarmi S (2013) Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. BioMed Res Int 2013

    Google Scholar 

  • Vidgren M, Waldrep JC, Arppe J, Black M, Rodarte JA, Cole W, Knight V (1995) A study of 99mtechnetium-labelled beclomethasone dipropionate dilauroylphosphatidylcholine liposome aerosol in normal volunteers. Int J Pharm 115(2):209–216

    Article  CAS  Google Scholar 

  • Waldrep JC, Gilbert BE, Knight CM, Black MB, Scherer PW, Knight V, Eschenbacher W (1997) Pulmonary delivery of beclomethasone liposome aerosol in volunteers: tolerance and safety. Chest 111(2):316–323

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, Liu H, Cui D, Chen Y, Wang S (2012a) Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 7:3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, Liu H, Cui D, Chen Y, Wang S (2012b) Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 7:3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler J, Hochhaus G, Derendorf H (2004) How the lung handles drugs: pharmacokinetics and pharmacodynamics of inhaled corticosteroids. Proc Am Thorac Soc 1(4):356–363

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2013) Global tuberculosis report 2013. World Health Organization

    Google Scholar 

  • Yhee JY, Im J, Nho RS (2016) Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery. J Clin Med 5(9):82

    Article  PubMed Central  CAS  Google Scholar 

  • Yoo D, Guk K, Kim H, Khang G, Wu D, Lee D (2013) Antioxidant polymeric nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm 450(1–2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Zaru M, Manca ML, Fadda AM, Antimisiaris SG (2009) Chitosan-coated liposomes for delivery to lungs by nebulisation. Colloids Surf B: Biointerfaces 71(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Shen Z, Nagai T (2001) Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm 218(1–2):75–80

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Tu Y, Wang S, Wang Y, Xie Y, Li M, Jin Y (2011) Preparation and characterization of budesonide-loaded solid lipid nanoparticles for pulmonary delivery. J Chin Pharm Sci 20(4):390–396

    CAS  Google Scholar 

  • Zhao YZ, Li X, Lu CT, Xu YY, Lv HF, Dai DD, Zhang L, Sun CZ, Yang W, Li XK, Zhao YP (2012) Experiment on the feasibility of using modified gelatin nanoparticles as insulin pulmonary administration system for diabetes therapy. Acta Diabetol 49(4):315–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, A. et al. (2022). Nanocarriers: An Advanced and Highly Effective Approach for Targeting Chronic Lung Diseases. In: Chellappan, D.K., Pabreja, K., Faiyazuddin, M. (eds) Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases . Springer, Singapore. https://doi.org/10.1007/978-981-16-4392-7_6

Download citation

Publish with us

Policies and ethics