Skip to main content

3D Bioprinting of Tissues and Organs: A New Paradigm in Regenerative Medicine and Biomedical Engineering

  • Chapter
  • First Online:
Biomedical Translational Research

Abstract

3D bioprinting is the most popular additive manufacturing method, in which solid objects are constructed by depositing several layers in sequence for the fabrication of biostructures. Bioprinted structures, like tissues, organs, and Organ-on-chip, in 3D, are now widely used to study and understand the functions of the human body. The 3D bioprinted structures are closely similar to naturally occurring biologics systems, and studies performed on 3D biostructures can be more biologically relevant than in vitro studies conducted in 2D. 3D bioprinting has advanced over the years and is commonly used in tissue engineering and regenerative medicine. The fabrication of biomaterials like cells, tissues, and organs using 3D bioprinting is becoming an alternative and favorable tissue and organ transplantation approach. Bioprinting is a relatively novel method and holds great promise but has several challenges and limitations. To this end, this chapter summarizes the concept of 3D bioprinting, bioinks and their classification, different methods of bioprinting, and their applications in areas of health, pharmaceutical science, and biomedical engineering. The chapter also highlights the challenges associated with the clinical utilization of 3D bioprinting. 3D bioprinting and its applications in personalized medicine and tissue bioengineering are continuously growing. In the future, this technology could provide advanced tools to the researchers to develop targeted treatment and improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S (2020) Current developments in 3D bioprinting for tissue and organ regeneration—a review. Front Mech Eng 6:90

    Article  Google Scholar 

  • Aguilar-de-Leyva Á, Linares V, Casas M, Caraballo I (2020) 3D printed drug delivery systems based on natural products. Pharmaceutics 12(7):620

    Article  CAS  PubMed Central  Google Scholar 

  • Ahangar P, Cooke M, Weber M, Rosenzweig D (2019) Current biomedical applications of 3D printing and additive manufacturing. Appl Sci 9(8):1713

    Article  CAS  Google Scholar 

  • Aimar A, Palermo A, Innocenti B (2019) The role of 3D printing in medical applications: a state of the art. J Healthc Eng 2019:1–10

    Article  Google Scholar 

  • Ali A, Ahmad U, Akhtar J (2020) 3D printing in pharmaceutical sector: an overview. In: Pharmaceutical formulation design-recent practices. IntechOpen, London

    Google Scholar 

  • Aljohani W, Ullah MW, Zhang X, Yang G (2018) Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 107:261–275

    Article  CAS  PubMed  Google Scholar 

  • Anciaux SK, Geiger M, Bowser MT (2016) 3D printed micro free-flow electrophoresis device. Anal Chem 88(15):7675–7682

    Article  CAS  PubMed  Google Scholar 

  • Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):014103

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. In: Seminars in immunology, vol 20. Academic Press, San Diego, CA, pp 109–116

    Google Scholar 

  • Beheshtizadeh N, Lotfibakhshaiesh N, Pazhouhnia Z, Hoseinpour M, Nafari M (2020) A review of 3D bio-printing for bone and skin tissue engineering: a commercial approach. J Mater Sci 55(9):3729–3749

    Article  CAS  Google Scholar 

  • Buyuksungur S, Tanir TE, Buyuksungur A, Bektas EI, Kose GT, Yucel D, Beyzadeoglu T, Cetinkaya E, Yenigun C, Tönük E, Hasirci V (2017) 3D printed poly (ε-caprolactone) scaffolds modified with hydroxyapatite and poly (propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci 5(10):2144–2158

    Article  CAS  PubMed  Google Scholar 

  • Campbell T, Williams C, Ivanova O, Garrett B (2011) Could 3D printing change the world. In: Technologies, potential, and implications of additive manufacturing. Atlantic Council, Washington, DC, p 3

    Google Scholar 

  • Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros-Mendez S (2020) Physically active bioreactors for tissue engineering applications. Adv Biosyst 4(10):2000125

    Article  Google Scholar 

  • Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, Cai W, Tao T, Xiang X (2017) Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of Domperidone. Sci Rep 7(1):2829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang R, Nam J, Sun W (2008) Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods 14(2):157–166

    Article  CAS  PubMed  Google Scholar 

  • Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Kim T, Jeong J, Yi H, Park J, Hwang W, Cho D (2016) 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater 5(20):2636–2645

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Breitenkamp K, Finn MG, Lotz M, D'Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng A 18(11–12):1304–1312

    Article  CAS  Google Scholar 

  • Cui X, Hartanto Y, Zhang H (2017) Advances in multicellular spheroids formation. J R Soc Interface 14(127):20160877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136(6):061016

    Article  Google Scholar 

  • Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7(9):1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Esch E, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14(4):248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshkalak SK, Ghomi ER, Dai Y, Choudhury D, Ramakrishna S (2020) The role of three-dimensional printing in healthcare and medicine. Mater Des 194:108940

    Article  CAS  Google Scholar 

  • FDA clears 3-D printed device for minimally invasive foot surgery. http://www.fiercemedicaldevices.com/story/fda-clears-3-d-printed-device-minimally-invasive-foot-surgery/2015-02-02. Accessed 11 Aug 2016

  • Fetah K, Tebon P, Goudie M, Eichenbaum J, Ren L, Barros N, Nasiri R, Ahadian S, Ashammakhi N, Dokmeci M, Khademhosseini A (2019) The emergence of 3D bioprinting in organ-on-chip systems. Progr Biomed Eng 1(1):012001

    Article  Google Scholar 

  • Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6):1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Ghadage S, Aloorkar N, Sudake S (2019) A decisive overview on three dimensional printing in pharmaceuticals. J Drug Deliv Therapeut 9(3):591–598

    Google Scholar 

  • Gloria A, Russo T, De Santis R, Ambrosio L (2009) 3D fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications. J Appl Biomater Biomech 7(3):141–152

    CAS  PubMed  Google Scholar 

  • Gokhare VG, Raut DN, Shinde DK (2017) A review paper on 3D-printing aspects and various processes used in the 3D-printing. Int J Eng Res Technol 6(6):953–958

    Google Scholar 

  • Goole J, Amighi K (2016) 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm 499(1–2):376–394

    Article  PubMed  CAS  Google Scholar 

  • Goyanes A, Martinez PR, Buanz A, Basit AW, Gaisford S (2015) Effect of geometry on drug release from 3D printed tablets. Int J Pharm 494(2):657–663

    Article  CAS  PubMed  Google Scholar 

  • Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC, Juengst T, Malda J, Mironov VA, Nakayama K, Ovsianikov A (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001

    Article  CAS  PubMed  Google Scholar 

  • Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Hao J, Lu Y, Wang L, Wallace GG, Zhou Q (2015) Three-dimensional bio-printing. Sci China Life Sci 58(5):411–419

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Fu J, Lin H, He Y (2019) Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharmaceut Sci 15(5):529–557

    Google Scholar 

  • Guo SZ, Heuzey MC, Therriault D (2014) Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures. Langmuir 30(4):1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Hartupee J, Mann DL (2016) Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol 93:143–148

    Article  CAS  PubMed  Google Scholar 

  • Hasirci V, Hasirci N (2018) Tissue engineering and regenerative medicine. In: Fundamentals of biomaterials. Springer, New York, NY, pp 281–302

    Chapter  Google Scholar 

  • Highley CB (2019) 3D bioprinting technologies. In: 3D bioprinting in medicine. Springer, Cham, pp 1–66

    Google Scholar 

  • Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B (2015) Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5(1):7974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hospodiuk M, Moncal KK, Dey M, Ozbolat IT (2016) Extrusion-based biofabrication in tissue engineering and regenerative medicine. In: 3D printing and biofabrication, pp 1–27

    Google Scholar 

  • Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239

    Article  CAS  PubMed  Google Scholar 

  • Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S (2018) 3D-printing of functional biomedical microdevices via light-and extrusion-based approaches. Small Methods 2(2):1700277

    Article  PubMed  CAS  Google Scholar 

  • Jamroz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res 35:176. https://doi.org/10.1007/s11095-018-2454-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamróz W, Szafraniec J, Kurek M, Jachowicz R (2018) 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res 35(9):176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia J, Richards DJ, Pollard S, Tan Y, Rodriguez J, Visconti RP, Trusk TC, Yost MJ, Yao H, Markwald RR, Mei Y (2014) Engineering alginate as bioink for bioprinting. Acta Biomater 10(10):4323–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose PA, Christoper PG (2018) 3D printing of pharmaceuticals—a potential technology in developing personalized medicine. Asian J Pharmaceut Res Dev 6(3):46–54

    Article  CAS  Google Scholar 

  • Kawasaki T, Maeno A, Shiroishi T, Sakai N (2017) Development and growth of organs in living whole embryo and larval grafts in zebrafish. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release 217:308–314

    Article  CAS  PubMed  Google Scholar 

  • Klein GT, Lu Y, Wang MY (2013) 3D printing and neurosurgery—ready for prime time? World Neurosurg 80(3–4):233–235

    Article  PubMed  Google Scholar 

  • Koçak E, Yildiz A, Acartürk F (2020) Three dimensional bioprinting technology: applications in pharmaceutical and biomedical area. Colloids Surf B Biointerfaces 197:111396

    Article  PubMed  CAS  Google Scholar 

  • Kumar H, Kim K (2020) Stereolithography 3D bioprinting. In: 3D bioprinting. Humana, New York, NY, pp 93–108

    Chapter  Google Scholar 

  • Lanza R, Langer R, Vacanti JP, Atala A (2020) Principles of tissue engineering. Academic press, New York

    Google Scholar 

  • Leite S, Roosens T, El Taghdouini A, Mannaerts I, Smout A, Najimi M, Sokal E, Noor F, Chesne C, van Grunsven L (2020) Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78:1–10

    Article  CAS  Google Scholar 

  • Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang X (2015) Creation of a vascular system for organ manufacturing. Int J Bioprint 1(1):77

    Google Scholar 

  • Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, Guan X, Zhong Z, Jin X, Khademhosseini A, Zhang YS (2017) Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater 6:1–11

    Article  Google Scholar 

  • Liu F, Chen Q, Liu C, Ao Q, Tian X, Fan J, Tong H, Wang X (2018a) Natural polymers for organ 3D bioprinting. Polymers 10(11):1278

    Article  PubMed Central  CAS  Google Scholar 

  • Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri AK, Fragasso A, Jin X, Khademhosseini A, Zhang YS (2018b) Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication 10(2):024102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorson T, Jaksch S, Lübtow MM, Jüngst T, Groll J, Lühmann T, Luxenhofer R (2017) A thermogelling supramolecular hydrogel with sponge-like morphology as a cytocompatible bioink. Biomacromolecules 18(7):2161–2171

    Article  CAS  PubMed  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills DK (2020) Bioinks and bioprinting: a focused review. Bioprinting 18:e00080

    Article  Google Scholar 

  • Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, Groll J, Li Q, Malda J, Mironov VA, Mota C (2018) Biofabrication: a guide to technology and terminology. Trends Biotechnol 36(4):384–402

    Article  CAS  PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • Neiman JAS, Raman R, Chan V, Rhoads MG, Raredon MSB, Velazquez JJ, Dyer RL, Bashir R, Hammond PT, Griffith LG (2015) Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol Bioeng 112(4):777–787

    Article  CAS  PubMed  Google Scholar 

  • Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B 143:172–196

    Article  CAS  Google Scholar 

  • Nguyen D, Robbins J, Crogan-Grundy C, Gorgen V, Bangalore P, Perusse D, Creasey O, King S, Lin S, Khatiwala C, Halberstadt C (2015) Functional characterization of three-dimensional (3D) human liver tissues generated by an automated bioprinting platform. FASEB J 29:LB424

    Article  Google Scholar 

  • Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M, Lindahl A (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7(1):1–10

    CAS  Google Scholar 

  • Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6(11):1900344

    Article  CAS  Google Scholar 

  • O’Connor RA, Cahill PA, McGuinness GB (2020) Cardiovascular tissue engineering. In: Biomaterials for organ and tissue regeneration. Woodhead Publishing, London, pp 249–272

    Chapter  Google Scholar 

  • Oklu R, Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell'Erba V, Assawes P, Shin SR (2016) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    PubMed  PubMed Central  Google Scholar 

  • Oladapo BI, Zahedi SA, Adeoye AOM (2019) 3D printing of bone scaffolds with hybrid biomaterials. Compos B Eng 158:428–436

    Article  CAS  Google Scholar 

  • Ozbolat I, Gudapati H (2016) A review on design for bioprinting. Bioprinting 3:1–14

    Article  Google Scholar 

  • Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699

    Article  PubMed  Google Scholar 

  • Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D (2019) 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication. Acta Cardiol Sin 35(3):284

    PubMed  PubMed Central  Google Scholar 

  • Park JH, Jang J, Lee JS, Cho DW (2017) Three-dimensional printing of tissue/organ analogues containing living cells. Ann Biomed Eng 45(1):180–194

    Article  PubMed  Google Scholar 

  • Park J, Jang J, Kang H (2018a) 3D bioprinting and its application to organ-on-a-chip. Microelectron Eng 200:1–11

    Article  CAS  Google Scholar 

  • Park J, Ryu H, Lee B, Ha D, Ahn M, Kim S, Kim J, Jeon N, Cho D (2018b) Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication 11(1):015002

    Article  PubMed  Google Scholar 

  • Peng W, Datta P, Ayan B, Ozbolat V, Sosnoski D, Ozbolat IT (2017) 3D bioprinting for drug discovery and development in pharmaceutics. Actabiomaterialia 57:26–46

    CAS  Google Scholar 

  • Peterson GI, Larsen MB, Ganter MA, Storti DW, Boydston AJ (2014) 3D-printed mechanochromic materials. ACS Appl Mater Interfaces 7(1):577–583

    Article  PubMed  CAS  Google Scholar 

  • Pourchet LJ, Thepot A, Albouy M (2017) Human skin 3D bioprinting using scaffold–free approach. Adv Healthc Mater 6:1601101. https://doi.org/10.1002/adhm.201601101

    Article  CAS  Google Scholar 

  • Radhakrishnan J, Varadaraj S, Dash S, Sharma A, Verma R (2020) Organotypic cancer tissue models for drug screening: 3D constructs, bioprinting and microfluidic chips. Drug Discov Today 25(5):879–890

    Article  CAS  PubMed  Google Scholar 

  • Rahim TNAT, Abdullah AM, MdAkil H (2019) Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 59(4):589–624

    Article  CAS  Google Scholar 

  • Rezende RA, Pereira FDAS, Kasyanov V, Kemmoku DT, Maia I, Da Silva JVL, Mironov V (2013) Scalable biofabrication of tissue spheroids for organ printing. Proc CIRP 5:276–281

    Article  Google Scholar 

  • Salentijn GI, Oomen PE, Grajewski M, Verpoorte E (2017) Fused deposition modeling 3D printing for (bio) analytical device fabrication: procedures, materials, and applications. Anal Chem 89(13):7053–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samiei N (2020) Recent trends on applications of 3D printing technology on the design and manufacture of pharmaceutical oral formulation: a mini review. Beni Suef Univ J Basic Appl Sci 9(1):1–12

    Article  Google Scholar 

  • Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT (2018) Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discovery 13(12):1115–1129

    Article  CAS  Google Scholar 

  • Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265

    Article  PubMed  Google Scholar 

  • Shafiee A, Atala A (2017) Tissue engineering: toward a new era of medicine. Annu Rev Med 68:29–40

    Article  CAS  PubMed  Google Scholar 

  • Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014

    Article  CAS  Google Scholar 

  • Shirure V, Bi Y, Curtis M, Lezia A, Goedegebuure M, Goedegebuure S, Aft R, Fields R, George S (2018) Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18(23):3687–3702

    Article  CAS  PubMed  Google Scholar 

  • Šljivić M, Mirjanić D, Šljivić N, Fragassa C, Pavlović A (2019) 3D printing and 3D bioprinting to use for medical applications. Contemp Mater 10:82

    Article  Google Scholar 

  • Subbiah R, Guldberg RE (2019) Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv Healthc Mater 8(1):1801000

    Article  CAS  Google Scholar 

  • Tappa K, Jammalamadaka U, Ballard D, Bruno T, Israel M, Vemula H, Meacham J, Mills D, Woodard P, Weisman J (2017) Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One 12(8):e0182929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tonelli FMP, de Cássia Oliveira Paiva N, de Medeiros RVB, Pinto MCX, Tonelli FCP, Resende RR (2016) Tissue engineering: the use of stem cells in regenerative medicine, pp 315–324

    Google Scholar 

  • Ursan ID, Chiu L, Pierce A (2013) Three-dimensional drug printing: a structured review. J Am Pharm Assoc 53(2):136–144

    Article  Google Scholar 

  • Van Linthout S, Miteva K, Tschöpe C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102(2):258–269

    Article  PubMed  CAS  Google Scholar 

  • Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJ, Melchels FP, Malda J (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5(3):035007

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan Y, Zhang R (2010) Recent trends and challenges in complex organ manufacturing. Tissue Eng Part B Rev 16(2):189–197

    Article  PubMed  Google Scholar 

  • Wang X, Ao Q, Tian X et al (2016a) 3D bioprinting technologies for hard tissue and organ engineering. Materials 9:802

    Article  PubMed Central  CAS  Google Scholar 

  • Wang J, Goyanes A, Gaisford S, Basit AW (2016b) Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 503(1–2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu S, Kuss MA, Streubel PN, Duan B (2017) Effects of hydroxyapatite and hypoxia on chondrogenesis and hypertrophy in 3D bioprinted ADMSC laden constructs. ACS Biomater Sci Eng 3(5):826–835

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W (2020) Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release 329:237–256

    Article  PubMed  CAS  Google Scholar 

  • Wardhana A, Valeria M (2020) Tissue engineering and regenerative medicine: a review. JurnalPlastikRekonstruksi 7(1):10–17

    Google Scholar 

  • Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W, Gong X (2020) Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 19(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Gao M, Lobo AO, Webster TJ (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers 12(8):1717

    Article  CAS  PubMed Central  Google Scholar 

  • Xiong R, Zhang Z, Chai W, Chrisey DB, Huang Y (2017) Study of gelatin as an effective energy absorbing layer for laser bioprinting. Biofabrication 9(2):024103

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742

    Article  CAS  Google Scholar 

  • Yeo MG, Kim GH (2017) A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Biofabrication 9(2):025004

    Article  PubMed  CAS  Google Scholar 

  • Yipeng J, Yongde X, Yuanyi W, Jilei S, Jiaxiang G, Jiangping G, Yong Y (2017) Microtissues enhance smooth muscle differentiation and cell viability of hADSCs for three dimensional bioprinting. Front Physiol 8:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu F, Choudhury D (2019) Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today 24(6):1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang Y, Martin JA, Ozbolat IT (2013) Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 135(9):91011

    Article  PubMed  Google Scholar 

  • Yu J, Park SA, Kim WD, Ha T, Xin YZ, Lee J, Lee D (2020) Current advances in 3D bioprinting technology and its applications for tissue engineering. Polymers 12(12):2958

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang S, Wang H (2019) Current progress in 3D bioprinting of tissue analogs. SLAS Technol 24(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Duchamp M, Oklu R, Ellisen LW, Langer R, Khademhosseini A (2016) Bioprinting the cancer microenvironment. ACS Biomater Sci Eng 2(10):1710–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Luo Y, Ma L, Gao L, Li Y, Xue Q, Yang H, Cui Z (2018) 3D bioprinting: an emerging technology full of opportunities and challenges. BioDesign Manuf 1(1):2–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chopra, K., Pawar, S.V., Maurya, M., Gupta, T., Dhaliwal, J. (2022). 3D Bioprinting of Tissues and Organs: A New Paradigm in Regenerative Medicine and Biomedical Engineering. In: Sobti, R., Sobti, A. (eds) Biomedical Translational Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-4345-3_15

Download citation

Publish with us

Policies and ethics