Skip to main content

Computerized Evaluation of Pulmonary Function Based on the Rib and Diaphragm Motion by Dynamic Chest Radiography

  • Chapter
  • First Online:
Multidisciplinary Computational Anatomy
  • 999 Accesses

Abstract

The respiratory system is essential to maintain life but can be affected by many types of diseases. Thus, a better understanding of pulmonary structure, function, and physiology is critical to solving the universal problems associated with peoples’ health in the respiratory system. In this chapter, we focus on the rib and diaphragm motion, as well as the lung density, closely related to the pulmonary function. As an effective tool for comprehensively understanding pulmonary function, dynamic chest radiography (DCR) and its findings in animal and clinical studies are introduced, followed by a proposal of cross-disciplinary approaches based on DCR in the respiratory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West JB. Respiratory physiology. The essentials. 1st ed. Philadelphia: Lippincott Williams & Wilkinss; 1974.

    Google Scholar 

  2. Nakamura S, Mori K, Iwano S, Kawaguchi K, Fukui T, Hakiri S, Ozeki N, Oda M, Yokoi K. Micro-computed tomography images of lung adenocarcinoma: detection of lepidic growth patterns. Nagoya J Med Sci. 2020;82(1):25–31.

    PubMed  PubMed Central  Google Scholar 

  3. Yamashiro T, Moriya H, Tsubakimoto M, et al. Continuous quantitative measurement of the proximal airway dimensions and lung density on four-dimensional dynamic-ventilation CT in smokers. Int J Chron Obstruct Pulmon Dis. 2016;11:755–64.

    Article  Google Scholar 

  4. Ohno Y, Hatabu H. Basics concepts and clinical applications of oxygen-enhanced MR imaging. Eur J Radiol. 2007;64:320–8.

    Article  Google Scholar 

  5. Bhave S, Lingala SG, Newell JD Jr, et al. Blind compressed sensing enables 3-dimensional dynamic free breathing magnetic resonance imaging of lung volumes and diaphragm motion. Investig Radiol. 2016;51:387–99.

    Article  Google Scholar 

  6. Tanaka R. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging. Radiol Phys Technol. 2006;9:139–53.

    Article  Google Scholar 

  7. Tanaka R, Sanada S. 12. Respiratory and cardiac function analysis on the basis of dynamic chest radiography. In: Suzuki K, editor. Part III Image Processing and Analysis, Computational Intelligence in Biomedical Imaging. Berlin: Springer; 2013. p. 317–45.

    Google Scholar 

  8. Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006;25:406–16.

    Article  Google Scholar 

  9. Knapp J, et al. Feature based neural network regression for feature suppression. U.S. Patent Number, 8,204,292 B2, June 12, 2012.

    Google Scholar 

  10. Tanaka R, Sanada S, Sakuta K, Kawashima H. Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results. J Med Imaging. 2015;2(2):024002. https://doi.org/10.1117/1.JMI.2.2.024002.

    Article  Google Scholar 

  11. Gilmartin JJ, Gibson GJ. Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax. 1984;39:264–71.

    Article  CAS  Google Scholar 

  12. Gilmartin JJ, Gibson GJ. Mechanisms of paradoxical rib cage motion in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1986;134:683–7.

    CAS  PubMed  Google Scholar 

  13. Yamada Y, Ueyama M, Abe T, Araki T, Abe T, Nihino M, et al. Time-resolved quantitative analysis of the diaphragms during tidal breathing in a standing position using dynamic chest radiography with a flat panel detector system (“dynamic X-ray phrenicography”): initial experience in 172 volunteers. Acad Radiol. 2017;24(4):393–400.

    Article  Google Scholar 

  14. Culham EG, Jimenez HA, King CE. Thoracic kyphosis, rib mobility, and lung volumes in normal women and women with osteoporosis. Spine. 1994;19:1250–5.

    Article  CAS  Google Scholar 

  15. Leong JC, Lu WW, Luk KD, Karlberg EM. Kinematics of the chest cage and spine during breathing in healthy individuals and in patients with adolescent idiopathic scoliosis. Spine. 1999;24:1310–5.

    Article  CAS  Google Scholar 

  16. Smyth RJ, Chapman KR, Wright TA, Crawford JS, Rebuck AS. Pulmonary function in adolescents with mild idiopathic scoliosis. Thorax. 1984;39:901–4.

    Article  CAS  Google Scholar 

  17. Hansen JT, Koeppen BM. Netter’s atlas of human physiology. New Jersy: Icon Learning Systems LLC; 2003. p. 94–5.

    Google Scholar 

  18. Squire LF, Novelline RA. Overexpansion and collapse of the lung: causes of mediastinal shift. In: Fundamentals of radiology. 4th ed. Cambridge, MA: Harvard University Press; 1988. p. 88–103.

    Google Scholar 

  19. Fraser RS, Muller NL, Colman NC. Part III: Radiologic signs of chest disease. In: Fraser and Pare’s diagnosis of diseases of the chest. 4th ed. Philadelphia: W.B. Saunders Company; 1999. p. 431–594.

    Google Scholar 

  20. Tanaka R, Tani T, Nitta N, Tabata T, Matsutani N, Muraoka S, et al. Pulmonary function diagnosis based on diaphragm movement using dynamic flat-panel detector imaging: An animal-based study. Proc SPIE 10578, Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, 10578V-1-6, 2018.

    Google Scholar 

  21. Ohkura N, Kasahara K, Watanabe S, Hara J, Abo N, Sone T, et al. Dynamic-ventilatory digital radiography in air flow limitation: change in lung area reflects air trapping. Respiration. 2020;99:382–8.

    Article  Google Scholar 

  22. Tanaka R, Kasahara K, Matsumoto I, Sanada S. Computerized evaluation of the rib kinetics and pulmonary function based on the rib and diaphragm motion by dynamic chest radiography. In Proceedings of the 5th international symposium on the project “Multidisciplinary computational anatomy”. 2019. p. 141–5

    Google Scholar 

  23. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Fujimura M, Yasui M, Matsui T, Nakayama K, Nanbu Y, Matsui O. Evaluation of pulmonary function using breathing chest radiography with a dynamic flat-panel detector (FPD): primary results in pulmonary diseases. Investig Radiol. 2006;41:735–45.

    Article  Google Scholar 

  24. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Nakayama K, Matsui T, Hayashi N, Matsui O. Quantification and visualization of relative local ventilation on dynamic chest radiographs. The international society for optical engineering. Medical imaging 2006. Proc SPIE. 2006;6143(2):62432Y1–8.

    Google Scholar 

  25. Tanaka R, Sanada S, Fujimura M, Yasui M, Nakayama K, Matsui T, Hayashi N, Matsui O. Development of functional chest imaging with a dynamic flat-panel detector (FPD). Radiol Phys Technol. 2008;1:137–43.

    Article  Google Scholar 

  26. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Ventilatory impairment detection based on distribution of respiratory-induced changes in pixel values in dynamic chest radiography: a feasibility study. IJCARS. 2011;6:103–10.

    Google Scholar 

  27. Tanaka R, Sanada S, Tsujioka K, Matsui T, Takata T, Matsui O. Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom. Radiol Phys Technol. 2008;1:27–32.

    Article  Google Scholar 

  28. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Pulmonary blood flow evaluation using a dynamic flat-panel detector: feasibility study with pulmonary diseases. IJCARS. 2009;4:449–54.

    Google Scholar 

  29. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector (FPD): quantitative correlation analysis with findings on perfusion scan. Radiol Phys Technol. 2010;3:40–5.

    Article  Google Scholar 

  30. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Ventilation-perfusion study without contrast media in dynamic chest radiography. The international society for optical engineering. Medical imaging 2011. Proc SPIE. 2011;7965:79651Y1–17.

    Article  Google Scholar 

  31. Tanaka R, Tani T, Nitta N, Tabata T, Matsutani N, Muraoka S, et al. Detection of pulmonary embolism based on reduced changes in radiographic lung density during cardiac beating using dynamic flat-panel detector: an animal-based study. Acad Radiol. 2019;26(10):1301–8.

    Article  Google Scholar 

  32. Tanaka R, Tani T, Nitta N, Tabata T, Matsutani N, Muraoka S, et al. Pulmonary function diagnosis based on respiratory changes in lung density with dynamic flat-panel detector imaging: an animal-based study. Investig Radiol. 2018;53(7):417–23.

    Article  Google Scholar 

  33. Hiasa Y, Otake Y, Tanaka R, Sanada S, Sato Y. Recovery of 3D rib motion from dynamic chest radiography and CT data using local contrast normalization and articular motion model. Med Image Anal. 2019;51:144–56.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a grant-in-Aid for Scientific Research (c) (16K10271) and a grant-in-aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy) (17H05286) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Tokyo, Japan, a grant-in-aid program for revitalization in Fukushima, Japan, and Konica Minolta, Inc., Tokyo, Japan. The author sincerely thanks staff in Dept. of respiratory medicine, thoracic surgery, and radiology at Kanazawa University Hospital, who gave me variable clinical advice, as well as staff in the biomedical innovation center, Dept. of radiology and Dept. of emergency, and I.C.U., at the Shiga University of Medical Science and Konica Minolta Inc. for the technical support in animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rie Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, R. (2022). Computerized Evaluation of Pulmonary Function Based on the Rib and Diaphragm Motion by Dynamic Chest Radiography. In: Hashizume, M. (eds) Multidisciplinary Computational Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4325-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4325-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4324-8

  • Online ISBN: 978-981-16-4325-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics