Skip to main content

MCA-Based Embryology and Embryo Imaging

  • Chapter
  • First Online:
Multidisciplinary Computational Anatomy

Abstract

The study of human embryology has a long history owing to its development in the human embryo collections that were first established in the nineteenth century. The first established large collection of human embryos was the Carnegie Collection, followed by several other major collections. After the Carnegie stages of development were defined based on morphological features of developing embryos, researchers have conducted morphological measurements and analyses to discover new insights using the stored specimens efficiently. At present, conducting analysis using nondestructive methods has been prioritized, and novel imaging techniques are adopted to preserve the specimens and have promoted the use of 3D imaging modalities. Visualizing tissues and organs in three dimensions has helped understand and characterize complex morphogenic changes in the body. The use of 3D imaging modalities started in the twentieth century using the histological sections for reconstruction, and now, 3D image datasets are also used. This chapter describes how the collections have been made, to provide new insights into human embryonic development, along with details of novel 3D imaging techniques for morphological analyses and their methods of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan LM. A social biography of Carnegie embryo no. 836. Anat Rec B New Anat. 2004;276(1):3–7. https://doi.org/10.1002/ar.b.20002.

    Article  PubMed  Google Scholar 

  2. O’Rahilly R, Müller F. Developmental stages in human embryos: including a revision of streeter's horizons and a survey of the Carnegie collection. Carnegie Institution of Washington: Washington, D.C; 1987.

    Google Scholar 

  3. Yamada S, Hill MA, Takakuwa T. Human Embryology. In: Wu B, editor. New discoveries in embryology. Rijeka, Croatia: IntechOpen; 2015. https://doi.org/10.5772/61453.

    Google Scholar 

  4. Dhanantwari P, Lee E, Krishnan A, Samtani R, Yamada S, Anderson S, et al. Human cardiac development in the first trimester: a high-resolution magnetic resonance imaging and episcopic fluorescence image capture atlas. Circulation. 2009;120(4):343–51. https://doi.org/10.1161/CIRCULATIONAHA.108.796698.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yamada S, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K, et al. Developmental atlas of the early first trimester human embryo. Dev Dyn. 2010;239(6):1585–95. https://doi.org/10.1002/dvdy.22316.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krishnan A, Samtani R, Dhanantwari P, Lee E, Yamada S, Shiota K, et al. A detailed comparison of mouse and human cardiac development. Pediatr Res. 2014;76(6):500–7. https://doi.org/10.1038/pr.2014.128.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Miyazaki R, Makishima H, Manner J, Sydow HG, Uwabe C, Takakuwa T, et al. Blechschmidt collection: revisiting specimens from a historical collection of serially sectioned human embryos and fetuses using modern imaging techniques. Congenit Anom (Kyoto). 2018;58(5):152–7. https://doi.org/10.1111/cga.12261.

    Article  Google Scholar 

  8. Ueno S, Yamada S, Uwabe C, Manner J, Shiraki N, Takakuwa T. The digestive tract and derived primordia differentiate by following a precise timeline in human embryos between Carnegie stages 11 and 13. Anat Rec (Hoboken). 2016;299(4):439–49. https://doi.org/10.1002/ar.23314.

    Article  PubMed  Google Scholar 

  9. Gasser RF, Cork RJ, Stillwell BJ, McWilliams DT. Rebirth of human embryology. Dev Dyn. 2014;243(5):621–8. https://doi.org/10.1002/dvdy.24110.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kerwin J, Yang Y, Merchan P, Sarma S, Thompson J, Wang X, et al. The HUDSEN atlas: a three-dimensional (3D) spatial framework for studying gene expression in the developing human brain. J Anat. 2010;217(4):289–99. https://doi.org/10.1111/j.1469-7580.2010.01290.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Bakker BS, de Jong KH, Hagoort J, de Bree K, Besselink CT, de Kanter FE, et al. An interactive three-dimensional digital atlas and quantitative database of human development. Science. 2016;354(6315):aag0053. https://doi.org/10.1126/science.aag0053.

    Article  CAS  PubMed  Google Scholar 

  12. Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, et al. Tridimensional visualization and analysis of early human development. Cell. 2017;169(1):161–73 e12. https://doi.org/10.1016/j.cell.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  13. Brown DD. The Department of Embryology of the Carnegie Institution of Washington. BioEssays. 1987;6(2):92–6. https://doi.org/10.1002/bies.950060213.

    Article  CAS  PubMed  Google Scholar 

  14. O’Rahilly R. One hundred years of human embryology. In: KALTER H, editor. Issues and reviews in Terratology. New York: Plenum Press; 1988.

    Google Scholar 

  15. Hill MA. Two web resources linking major human embryology collections worldwide. Cells Tissues Organs. 2018;205(5–6):293–302. https://doi.org/10.1159/000495619.

    Article  PubMed  Google Scholar 

  16. Blechschmidt E. Reconstruction method by using synthetic substances; a process for investigation and demonstration of developmental movements. Z Anat Entwicklungsgesch. 1954;118(2):170–4.

    Article  CAS  Google Scholar 

  17. Matsunaga E, Shiota K. Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology. 1977;16(3):261–72. https://doi.org/10.1002/tera.1420160304.

    Article  CAS  PubMed  Google Scholar 

  18. Born J. Ueber die Nasenhöhlen und den Tränennasengang der Amphibien. Morphologisches Jahrbuch. 1876;2:577–646.

    Google Scholar 

  19. Mall FP. On measuring human embryos. Anat Rec. 1907;1(6):129–40.

    Article  Google Scholar 

  20. Desmond ME, O'Rahilly R. The growth of the human brain during the embryonic period proper. 1. Linear axes. Anat Embryol (Berl). 1981;162(2):137–51. https://doi.org/10.1007/BF00306486.

    Article  CAS  Google Scholar 

  21. Diewert VM. A morphometric analysis of craniofacial growth and changes in spatial relations during secondary palatal development in human embryos and fetuses. Am J Anat. 1983;167(4):495–522. https://doi.org/10.1002/aja.1001670407.

    Article  CAS  PubMed  Google Scholar 

  22. Yamada S, Itoh H, Uwabe C, Fujihara S, Nishibori C, Wada M, et al. Computerized three-dimensional analysis of the heart and great vessels in normal and holoprosencephalic human embryos. Anat Rec (Hoboken). 2007;290(3):259–67. https://doi.org/10.1002/ar.20427.

    Article  PubMed  Google Scholar 

  23. Shiota K, Nakatsu T, Irie H. Computerized three-dimensional reconstruction of the brain of normal and holoprosencephalic human embryos. Birth Defects Orig Artic Ser. 1993;29(1):261–71.

    CAS  PubMed  Google Scholar 

  24. Miura T, Komori M, Takahashi T, Shiota K. Computerized three-dimensional reconstruction of human embryos and their organs using the "NIH image" software. Kaibogaku Zasshi. 1995;70(4):353–61.

    CAS  PubMed  Google Scholar 

  25. Kishimoto H, Yamada S, Kanahashi T, Yoneyama A, Imai H, Matsuda T, et al. Three-dimensional imaging of palatal muscles in the human embryo and fetus: development of levator veli palatini and clinical importance of the lesser palatine nerve. Dev Dyn. 2016;245(2):123–31. https://doi.org/10.1002/dvdy.24364.

    Article  CAS  PubMed  Google Scholar 

  26. Kajihara T, Funatomi T, Makishima H, Aoto T, Kubo H, Yamada S, et al. Non-rigid registration of serial section images by blending transforms for 3D reconstruction. Pattern Recogn. 2019;96:106956. https://doi.org/10.1016/j.patcog.2019.07.001.

    Article  Google Scholar 

  27. Weninger WJ, Mohun T. Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet. 2002;30(1):59–65. https://doi.org/10.1038/ng785.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenthal J, Mangal V, Walker D, Bennett M, Mohun TJ, Lo CW. Rapid high resolution three dimensional reconstruction of embryos with episcopic fluorescence image capture. Birth Defects Res C Embryo Today. 2004;72(3):213–23. https://doi.org/10.1002/bdrc.20023.

    Article  CAS  PubMed  Google Scholar 

  29. Bone SN, Johnson GA, Thompson MB. Three-dimensional magnetic resonance microscopy of the developing chick embryo. Investig Radiol. 1986;21(10):782–7. https://doi.org/10.1097/00004424-198610000-00003.

    Article  CAS  Google Scholar 

  30. Smith BR, Effmann EL, Johnson GA. MR microscopy of chick embryo vasculature. J Magn Reson Imaging. 1992;2(2):237–40. https://doi.org/10.1002/jmri.1880020220.

    Article  CAS  PubMed  Google Scholar 

  31. Smith BR, Johnson GA, Groman EV, Linney E. Magnetic resonance microscopy of mouse embryos. Proc Natl Acad Sci U S A. 1994;91(9):3530–3. https://doi.org/10.1073/pnas.91.9.3530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith BR, Linney E, Huff DS, Johnson GA. Magnetic resonance microscopy of embryos. Comput Med Imaging Graph. 1996;20(6):483–90. https://doi.org/10.1016/s0895-6111(96)00046-8.

    Article  CAS  PubMed  Google Scholar 

  33. Smith BR. Visualizing human embryos. Sci Am. 1999;280(3):76–81. https://doi.org/10.1038/scientificamerican0399-76.

    Article  CAS  PubMed  Google Scholar 

  34. Haishi T, Uematsu T, Matsuda Y, Kose K. Development of a 1.0 T MR microscope using a Nd-Fe-B permanent magnet. Magn Reson Imaging. 2001;19(6):875–80. https://doi.org/10.1016/s0730-725x(01)00400-3.

    Article  CAS  PubMed  Google Scholar 

  35. Matsuda Y, Ono S, Otake Y, Handa S, Kose K, Haishi T, et al. Imaging of a large collection of human embryo using a super-parallel MR microscope. Magn Reson Med Sci. 2007;6(3):139–46. https://doi.org/10.2463/mrms.6.139.

    Article  PubMed  Google Scholar 

  36. Matsuda Y, Utsuzawa S, Kurimoto T, Haishi T, Yamazaki Y, Kose K, et al. Super-parallel MR microscope. Magn Reson Med. 2003;50(1):183–9. https://doi.org/10.1002/mrm.10515.

    Article  PubMed  Google Scholar 

  37. Yamada S, Uwabe C, Nakatsu-Komatsu T, Minekura Y, Iwakura M, Motoki T, et al. Graphic and movie illustrations of human prenatal development and their application to embryological education based on the human embryo specimens in the Kyoto collection. Dev Dyn. 2006;235(2):468–77. https://doi.org/10.1002/dvdy.20647.

    Article  PubMed  Google Scholar 

  38. Shiota K, Yamada S, Nakatsu-Komatsu T, Uwabe C, Kose K, Matsuda Y, et al. Visualization of human prenatal development by magnetic resonance imaging (MRI). Am J Med Genet A. 2007;143A(24):3121–6. https://doi.org/10.1002/ajmg.a.31994.

    Article  PubMed  Google Scholar 

  39. Momose A, Fukuda J. Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys. 1995;22(4):375–9. https://doi.org/10.1118/1.597472.

    Article  CAS  PubMed  Google Scholar 

  40. Becker P, Bonse U. The skew-symmetric two-crystal X-ray interferometer. J Appl Crystallogr. 1974;7(6):593–8. https://doi.org/10.1107/S0021889874010491.

    Article  Google Scholar 

  41. Yoneyama A, Takeda T, Tsuchiya Y, Wu J, Thet Thet L, Koizumi A, et al. A phase-contrast X-ray imaging system—with a 60×30mm field of view—based on a skew-symmetric two-crystal X-ray interferometer. Nucl Instrum Methods Phys Res, Sect A. 2004;523(1):217–22. https://doi.org/10.1016/j.nima.2003.12.008.

    Article  CAS  Google Scholar 

  42. Morimoto N, Ogihara N, Katayama K, Shiota K. Three-dimensional ontogenetic shape changes in the human cranium during the fetal period. J Anat. 2008;212(5):627–35. https://doi.org/10.1111/j.1469-7580.2008.00884.x.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shigehito Y, Takashi N, Ayumi H, Akio Y, Tohoru T, Tetsuya T. Developmental anatomy of the human embryo – 3D-imaging and analytical techniques; 2012. https://doi.org/10.5772/32104.

    Book  Google Scholar 

  44. Katsube M, Yamada S, Miyazaki R, Yamaguchi Y, Makishima H, Takakuwa T, et al. Quantitation of nasal development in the early prenatal period using geometric morphometrics and MRI: a new insight into the critical period of binder phenotype. Prenat Diagn. 2017;37(9):907–15. https://doi.org/10.1002/pd.5106.

    Article  PubMed  Google Scholar 

  45. Katsube M, Yamada S, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, et al. Critical growth processes for the Midfacial morphogenesis in the early prenatal period. Cleft Palate Craniofac J. 2019;56(8):1026–37. https://doi.org/10.1177/1055665619827189.

    Article  PubMed  Google Scholar 

  46. Kishimoto M, Saito A, Takakuwa T, Yamada S, Matsuzoe H, Hontani H, et al. A spatiotemporal statistical model for eyeballs of human embryos. IEICE Trans Inf Syst. 2017;E100.D(7):1505–15. https://doi.org/10.1587/transinf.2016EDP7493.

    Article  Google Scholar 

  47. Ishiyama H, Ishikawa A, Kitazawa H, Fujii S, Matsubayashi J, Yamada S, et al. Branching morphogenesis of the urinary collecting system in the human embryonic metanephros. PLoS One. 2018;13(9):e0203623. https://doi.org/10.1371/journal.pone.0203623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kasahara K, Saito A, Takakuwa T, Yamada S, Matsuzoe H, Hontani H, et al. A spatiotemporal statistical shape model of the brain surface during human embryonic development. Advanced Biomedical Engineering. 2018;7:146–55. https://doi.org/10.14326/abe.7.146.

    Article  Google Scholar 

  49. Katsube M, Rolfe SM, Bortolussi SR, Yamaguchi Y, Richman JM, Yamada S, et al. Analysis of facial skeletal asymmetry during foetal development using muCT imaging. Orthod Craniofac Res. 2019;22(Suppl 1):199–206. https://doi.org/10.1111/ocr.12304.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Suzuki Y, Matsubayashi J, Ji X, Yamada S, Yoneyama A, Imai H, et al. Morphogenesis of the femur at different stages of normal human development. PLoS One. 2019;14(8):e0221569. https://doi.org/10.1371/journal.pone.0221569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Okuno K, Ishizu K, Matsubayashi J, Fujii S, Sakamoto R, Ishikawa A, et al. Rib cage morphogenesis in the human embryo: a detailed three-dimensional analysis. Anat Rec (Hoboken). 2019;302(12):2211–23. https://doi.org/10.1002/ar.24226.

    Article  Google Scholar 

  52. Saito A, Tsujikawa M, Takakuwa T, Yamada S, Shimizu A. Level set distribution model of nested structures using logarithmic transformation. Med Image Anal. 2019;56:1–10. https://doi.org/10.1016/j.media.2019.05.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehito Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakano, S., Kodama, R., Yamaguchi, Y., Takakuwa, T., Yamada, S. (2022). MCA-Based Embryology and Embryo Imaging. In: Hashizume, M. (eds) Multidisciplinary Computational Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4325-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4325-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4324-8

  • Online ISBN: 978-981-16-4325-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics