Skip to main content

Abstract

A lot of focus has been laid on the studies of carbon-related materials (CRMs). Owing to self-lubricating properties, high strength, high density, high hardness, and good electrical conductivity, CRMs find a variety of applications. Recent studies have shown that the carbon-related materials have been successfully incorporated in the Al, Mg, Cu and their alloys. Also, they serve as additives in different lubricating oils in order to obtain the improved tribological properties. Further, their use as coating materials also resulted in the enhancement of wear resistant capability of different materials. The aim of this paper is to discuss the recent developments in related to CRMs in field of tribology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand A, Haq MIU, Vohra K, Raina A, Wani MF (2017) Role of green tribology in sustainability of mechanical systems: a state of the art survey. Mater Today: Proc 4(2):3659–3665

    Google Scholar 

  2. Baba ZU, Shafi WK, Haq MIU, Raina A (2019) Towards sustainable automobiles-advancements and challenges. Prog Ind Ecol Int J 13(4):315–331

    Article  Google Scholar 

  3. Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234

    Article  Google Scholar 

  4. Singh N, Mir IUH, Raina A, Anand A, Kumar V, Sharma SM (2018) Synthesis and tribological investigation of Al-SiC based nano hybrid composite. Alex Eng J 57(3):1323–1330

    Article  Google Scholar 

  5. Aziz R, Haq MIU, Raina A (2020) Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym Test 85:106434

    Google Scholar 

  6. Shafi WK, Raina A, Haq MIU (2018) Tribological performance of avocado oil containing copper nanoparticles in mixed and boundary lubrication regime. Ind Lubr Tribol

    Google Scholar 

  7. Kerni L, Raina A, Haq MIU (2019) Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear 426:819–827

    Article  CAS  Google Scholar 

  8. Bakunin VN, Suslov AY, Kuzmina GN, Parenago OP, Topchiev AV (2004) Synthesis and application of inorganic nanoparticles as lubricant components—a review. J Nanopart Res 6(2):273–284

    Article  CAS  Google Scholar 

  9. Dresselhaus MS, Avouris P (2001) Introduction to carbon materials research. Carbon Nanotubes 1–9

    Google Scholar 

  10. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163

    Google Scholar 

  11. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    Article  CAS  Google Scholar 

  12. Legoas SB, Dos Santos RPB, Troche KS, Coluci VR, Galvao DS (2011) Ordered phases of encapsulated diamondoids into carbon nanotubes. Nanotechnology 22(31):315708

    Google Scholar 

  13. Iijima S, Ajayan PM, Ichihashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69(21):3100

    Article  CAS  Google Scholar 

  14. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Carbon Nanotubes 391–425

    Google Scholar 

  15. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  CAS  Google Scholar 

  16. Yudasaka M, Iijima S, Crespi VH (2007) Single-wall carbon nanohorns and nanocones. Carbon Nanotubes 605–629

    Google Scholar 

  17. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510

    Article  Google Scholar 

  18. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71

    Article  CAS  Google Scholar 

  19. Anand R, Raina A, Ul Haq MI, Mir MJ, Gulzar O, Wani MF (2020) Synergism of TiO2 and graphene as nano-additives in bio-based cutting fluid-an experimental investigation. Tribolo Trans 1–21

    Google Scholar 

  20. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  21. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  Google Scholar 

  22. Kerni L, Raina A, Haq MIU (2018) Performance evaluation of aluminium alloys for piston and cylinder applications. Mater Today: Proc 5(9):18170–18175

    CAS  Google Scholar 

  23. Singh H, Raina A, Haq MIU (2018) Effect of TiB2 on mechanical and tribological properties of aluminium alloys—a review. Mater Today: Proc 5(9):17982–17988

    CAS  Google Scholar 

  24. Slathia S, Haq MIU, Raina A (2018, August) Fabrication and mechanical characterization of AA2024-ZrO2-Gr hybrid composite. In: AIP conference proceedings, vol 2006, No. 1, p 030047. AIP Publishing LLC

    Google Scholar 

  25. Xiong B, Liu K, Xiong W, Wu X, Sun J (2020) Strengthening effect induced by interfacial reaction in graphene nanoplatelets reinforced aluminum matrix composites. J Alloys Compd 845:156282

    Google Scholar 

  26. Turan ME (2019) Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites. J Alloy Compd 788:352–360

    Article  CAS  Google Scholar 

  27. Tsemenko VN, Tolochko OV, Kol’Tsova TS, Ganin SV, Mikhailov VG (2018) Fabrication, structure and properties of a composite from aluminum matrix reinforced with carbon nanofibers. Metal Sci Heat Treat 60(1):24–31

    Google Scholar 

  28. Liu X, Li J, Sha J, Liu E, Li Q, He C et al (2018) In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. Mater Sci Eng A 709:65–71

    Article  CAS  Google Scholar 

  29. Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629

    Article  CAS  Google Scholar 

  30. Kwon H, Lee GG, Kim SG, Lee BW, Seo WC, Leparoux M (2015) Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials. Mater Sci Eng A 632:72–77

    Article  CAS  Google Scholar 

  31. Say Y, Guler O, Dikici B (2020) Carbon nanotube (CNT) reinforced magnesium matrix composites: the effect of CNT ratio on their mechanical properties and corrosion resistance. Mater Sci Eng A 798:139636

    Google Scholar 

  32. Du X, Du W, Wang Z, Liu K, Li S (2018) Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites. Mater Sci Eng A 711:633–642

    Article  CAS  Google Scholar 

  33. Yuan QH, Zhou GH, Liao L, Liu Y, Luo L (2018) Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets. Carbon 127:177–186

    Article  CAS  Google Scholar 

  34. Turan ME, Sun Y, Akgul Y (2018) Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy. J Alloy Compd 740:1149–1158

    Article  CAS  Google Scholar 

  35. Turan ME, Sun Y, Aydin F, Zengin H, Turen Y, Ahlatci H (2018) Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites. Mater Chem Phys 218:182–188

    Article  CAS  Google Scholar 

  36. Zhang X, Yang W, Zhang J, Ge X, Liu X, Zhan Y (2019) Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties. Mater Sci Eng A 743:512–519

    Article  CAS  Google Scholar 

  37. Shao G, Liu P, Zhang K, Li W, Chen X, Ma F (2019) Mechanical properties of graphene nanoplates reinforced copper matrix composites prepared by electrostatic self-assembly and spark plasma sintering. Mater Sci Eng A 739:329–334

    Article  CAS  Google Scholar 

  38. Zhang K, Shao G, Li W, Chen X, Ma F, Liu P (2019) Wear and corrosion behavior of graphene-nanoplate-reinforced copper matrix composites prepared through electrostatic self-assembly. J Mater Eng Perform 28(3):1650–1660

    Article  CAS  Google Scholar 

  39. Salvo C, Mangalaraja RV, Udayabashkar R, Lopez M, Aguilar C (2019) Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites. J Alloy Compd 777:309–316

    Article  CAS  Google Scholar 

  40. Kumar J, Mondal S (2018) Microstructure and properties of graphite-reinforced copper matrix composites. J Braz Soc Mech Sci Eng 40(4):1–10

    Google Scholar 

  41. Liu J, Xiong DB, Tan Z, Fan G, Guo Q, Su Y et al (2018) Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminated composites. Mater Sci Eng A 729:452–457

    Article  CAS  Google Scholar 

  42. Shafi WK, Raina A, Haq MIU (2019) Performance evaluation of hazelnut oil with copper nanoparticles-a new entrant for sustainable lubrication. Ind Lubric Tribol

    Google Scholar 

  43. Anand R, Haq MIU, Raina A (2020) Bio-based nano-lubricants for sustainable manufacturing. In: Nanomaterials and environmental biotechnology, pp 333–380. Springer, Cham

    Google Scholar 

  44. Omrani E, Siddaiah A, Moghadam AD, Garg U, Rohatgi P, Menezes PL (2021) Ball milled graphene nano additives for enhancing sliding contact in vegetable oil. Nanomaterials 11(3):610

    Article  CAS  Google Scholar 

  45. Zhang G, Xu Y, Xiang X, Zheng G, Zeng X, Li Z et al (2018) Tribological performances of highly dispersed graphene oxide derivatives in vegetable oil. Tribol Int 126:39–48

    Article  CAS  Google Scholar 

  46. Krishna PV, Srikant RR, Parimala N (2018) Experimental investigation on properties and machining performance of CNT suspended vegetable oil nanofluids. Int J Automot Mech Eng 15(4):5957–5975

    Article  CAS  Google Scholar 

  47. Sadiq IO, Sharif S, Suhaimi MA, Yusof NM, Shayfull Z (2018, November) Influence of XGnP as additives on properties of vegetable oil nanolubricant for machining process. In: AIP conference proceedings, vol 2030, No. 1, p 020085. AIP Publishing LLC

    Google Scholar 

  48. Bhaumik S, Datta S, Pathak SD (2017) Analyses of tribological properties of castor oil with various carbonaceous micro-and nano-friction modifiers. J Tribol 139(6)

    Google Scholar 

  49. Kiu SSK, Yusup S, Chok VS, Taufiq A, Kamil RNM, Syahrullail S, Chin BLF (2017, June) Comparison on tribological properties of vegetable oil upon addition of carbon based nanoparticles. In: IOP conference series: materials science and engineering, vol 206, No. 1, p 012043. IOP Publishing

    Google Scholar 

  50. Lv X, Cao L, Yang T, Wan Y, Gao J (2020) Lubricating behavior of Submicrometer carbon spheres as lubricant additives. Part Sci Technol 38(5):568–572

    Article  CAS  Google Scholar 

  51. Pico DFM, da Silva LRR, Mendoza OSH, Bandarra Filho EP (2020) Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. Int J Heat Mass Transfer 152:119493

    Google Scholar 

  52. Paul G, Shit S, Hirani H, Kuila T, Murmu NC (2019) Tribological behavior of dodecylamine functionalized graphene nanosheets dispersed engine oil nanolubricants. Tribol Int 131:605–619

    Article  CAS  Google Scholar 

  53. Raina A, Anand A (2018) Effect of nanodiamond on friction and wear behavior of metal dichalcogenides in synthetic oil. Appl Nanosci 8(4):581–591

    Article  CAS  Google Scholar 

  54. Raina A, Anand A (2018) Lubrication performance of synthetic oil mixed with diamond nanoparticles: Effect of concentration. Mater Today: Proc 5(9):20588–20594

    CAS  Google Scholar 

  55. Raina A, Anand A (2018) Influence of surface roughness and nanoparticles concentration on the friction and wear characteristics of PAO base oil. Mater Res Express 5(9):095018

    Google Scholar 

  56. Raina A, Anand A (2017) Tribological investigation of diamond nanoparticles for steel/steel contacts in boundary lubrication regime. Appl Nanosci 7(7):371–388

    Article  CAS  Google Scholar 

  57. Azman SSN, Zulkifli NWM, Masjuki H, Gulzar M, Zahid R (2016) Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. J Mater Res 31(13):1932

    Article  CAS  Google Scholar 

  58. Vats BN, Singh M (2020) Evaluation of tribological properties of graphene oxide dispersed paraffin oil. Mater Today: Proc 25:557–562

    CAS  Google Scholar 

  59. Majeed FSA, Yusof NBM, Suhaimi MA, Elsiti NM (2020) Effect of paraffin oil with XGnP and Fe2O3 nanoparticles on tribological properties. Mater Today: Proc 27:1685–1688

    CAS  Google Scholar 

  60. Yunusov FA, Breki AD, Vasilyeva ES, Tolochko OV (2020) The influence of nano additives on tribological properties of lubricant oil. Mater Today: Proc 30:632–634

    CAS  Google Scholar 

  61. Khalil W, Mohamed A, Bayoumi M, Osman TA (2016) Tribological properties of dispersed carbon nanotubes in lubricant. Fullerenes Nanotubes Carbon Nanostruct 24(7):479–485

    Article  CAS  Google Scholar 

  62. Marko M, Kyle J, Branson B, Terrell E (2015) Tribological improvements of dispersed nanodiamond additives in lubricating mineral oil. J Tribol 137(1)

    Google Scholar 

  63. Peng DX, Kang Y, Chen CH, Shu SKCFC (2009) The tribological behavior of modified diamond nanoparticles in liquid paraffin. Ind Lubric Tribol

    Google Scholar 

  64. Toosinezhad A, Alinezhadfar M, Mahdavi S (2020) Cobalt/graphene electrodeposits: characteristics, tribological behavior, and corrosion properties. Surf Coatings Technol 385:125418

    Google Scholar 

  65. Mura A, Wang H, Adamo F, Kong J (2019) Graphene coatings to enhance tribological performance of steel. Mech Adv Mater Struct

    Google Scholar 

  66. Vinoth IS, Detwal S, Umasankar V, Sarma A (2019) Tribological studies of automotive piston ring by diamond-like carbon coating. Tribol Mater Surf Interfaces 13(1):31–38

    Article  CAS  Google Scholar 

  67. Siddaiah A, Kumar P, Henderson A, Misra M, Menezes PL (2019) Surface energy and tribology of electrodeposited Ni and Ni–graphene coatings on steel. Lubricants 7(10):87

    Article  Google Scholar 

  68. Kim HJ, Kim DE (2015) Water lubrication of stainless steel using reduced graphene oxide coating. Sci Rep 5(1):1–13

    Google Scholar 

  69. Ogawa F, Yamamoto S, Masuda C (2019) Thermal conductivity and tensile properties of carbon nanofiber-reinforced aluminum-matrix composites fabricated via powder metallurgy: effects of ball milling and extrusion conditions on microstructures and resultant composite properties. Acta Metallurgica Sinica (English Letters) 32(5):573–584

    Article  CAS  Google Scholar 

  70. Yuan C, Tan Z, Fan G, Chen M, Zheng Q, Li Z (2019) Fabrication and mechanical properties of CNT/Al composites via shift-speed ball milling and hot-rolling. J Mater Res 34(15):2609–2619

    Article  CAS  Google Scholar 

  71. Ghasali E, Sangpour P, Jam A, Rajaei H, Shirvanimoghaddam K, Ebadzadeh T (2018) Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Arch Civil Mech Eng 18:1042–1054

    Article  Google Scholar 

  72. Meng J, Shi X, Wang M, Zhang S, Kong X (2018) Microstructure and wear resistance of graphene-reinforced aluminum matrix composites. Mater Res Express 6(2:026517

    Google Scholar 

  73. Sedlák R, Kovalčíková A, Balko J, Rutkowski P, Dubiel A, Zientara D et al (2017) Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int J Refract Metal Hard Mater 65:57–63

    Article  CAS  Google Scholar 

  74. Li H, Dai X, Zhao L, Li B, Wang H, Liang C, Fan J (2019) Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process. J Alloy Compd 785:146–155

    Article  CAS  Google Scholar 

  75. Wang P, Zhang W, Diao D (2017) Low friction of graphene nanocrystallite embedded carbon nitride coatings prepared with MCECR plasma sputtering. Surf Coat Technol 332:153–160

    Article  CAS  Google Scholar 

  76. Song H, Wang B, Zhou Q, Xiao J, Jia X (2017) Preparation and tribological properties of MoS2/graphene oxide composites. Appl Surf Sci 419:24–34

    Article  CAS  Google Scholar 

  77. Gupta G, Haq MIU, Raina A, Shafi WK (2021) Effect of epoxidation and nanoparticle addition on the rheological and tribological properties of canola oil. In: Proc Inst Mech Eng Part J: J Eng Tribol 13506501211016181

    Google Scholar 

  78. Ho DN (2010) Applications in biology and nanoscale medicine. Springer US, 10, 978-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jammoria, N.S., Ul Haq, M.I., Raina, A. (2022). Carbon-Related Materials for Tribological Application. In: Bindhu, V., R. S. Tavares, J.M., Ţălu, Ş. (eds) Proceedings of Fourth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4321-7_39

Download citation

Publish with us

Policies and ethics