Skip to main content

A Posteriori Analysis of Analytical Models for Flotation Circuits Using Sensitivity Analyses

  • Conference paper
  • First Online:
Proceedings of Fourth International Conference on Inventive Material Science Applications

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

  • 722 Accesses

Abstract

The flotation of minerals is a multivariate physicochemical process that consists of applying the affinity of some mineral particles to the air, and also the affinity of other mineral particles for water, with the aim of obtaining a commercial product called concentrate, in addition to nonvaluable minerals called gangues. The flotation circuits, in charge of enriching the concentrate, generally consist of 3 stages, rougher, cleaner, and scavenger, which are made up of one or more cells, either in series or in parallel, depending on the architecture of the operational circuit. In this research, a local sensitivity analysis is developed for studying the behaviour of the stages that compose different flotation circuits. It is evaluated the concentrate grade quantifying the effect that circumstantial alteration has in the transfer rate of the concentration stages. The sensitivity analysis allows identify operation conditions that optimizing the concentrations offered by the flotation circuits. The results indicate that in simple circuits, the greatest impact on the concentration corresponds to rougher and cleaner cells, while in complex circuits (with additional cell banks), the sensitization of the rougher and cleaner cells, along with the early stages of the cleaner–scavenger cells have a greater impact on concentrate grade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Toro N, Briceño W, Pérez K, Cánovas M, Trigueros E, Sepúlveda R, Hernández P (2019) Leaching of pure chalcocite in a chloride media using sea water and waste water. Metals (Basel) 9(7):780

    Article  CAS  Google Scholar 

  2. Torres D, Ayala L, Jeldres RI, Cerecedo-Sáenz E, Salinas-Rodríguez E, Robles P, Toro N (2020) Leaching chalcopyrite with high MnO2 and chloride concentrations. Metals (Basel) 10(1):107

    Article  CAS  Google Scholar 

  3. Pérez K, Toro N, Campos E, Nazer A, Rodriquez MH (2019) Extraction of Mn from black copper using ıron acid medium. Metals (Basel) 9(10):1–10

    Google Scholar 

  4. Saldaña M, González J, Jeldres R, Villegas Á, Castillo J, Quezada G, Toro N (2019) A stochastic model approach for copper heap leaching through bayesian networks. Metals (Basel) 9(11):1198

    Article  CAS  Google Scholar 

  5. Toro N, Jeldres RI, Órdenes JA, Robles P, Navarra A (2020) Manganese nodules in Chile, an alternative for the production of Co and Mn in the future—a review. Minerals 10(8):674

    Article  CAS  Google Scholar 

  6. Toro N, Robles P, Jeldres RI (2020) Seabed mineral resources, an alternative for the future of renewable energy: a critical review. Ore Geol Rev 126(July):103699

    Google Scholar 

  7. Robles P, Piceros E, Leiva WH, Valenzuela J, Toro N, Jeldres RI (2019) Analysis of sodium polyacrylate as a rheological modifier for kaolin suspensions in seawater. Appl Clay Sci 183

    Google Scholar 

  8. Torres D, Pérez K, Trigueros E, Jeldres RI, Salinas-Rodríguez E, Robles P, Toro N (2020) Reducing-effect of chloride for the dissolution of black copper. Metals (Basel) 10(1):123

    Article  CAS  Google Scholar 

  9. Toro N, Saldaña M, Castillo J, Higuera F, Acosta R (2019) Leaching of manganese from marine nodules at room temperature with the use of sulfuric acid and the addition of tailings. Minerals 9(5):289

    Article  CAS  Google Scholar 

  10. Toro N, Saldaña M, Gálvez E, Cánovas M, Trigueros E, Castillo J, Hernández PC (2019) Optimization of parameters for the dissolution of Mn from manganese nodules with the use of tailings in an acid medium. Minerals 9(7):387

    Article  CAS  Google Scholar 

  11. Torres D, Ayala L, Saldaña M, Cánovas M, Jeldres RI, Nieto S, Castillo J, Robles P, Toro N (2019) Leaching manganese nodules in an acid medium and room temperature comparing the use of different fe reducing agents. Metals (Basel) 9(12):1316

    Article  CAS  Google Scholar 

  12. Velásquez-Yévenes L, Torres D, Toro N (2018) Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods. Hydrometallurgy 181(September):215–220

    Article  CAS  Google Scholar 

  13. Pérez K, Toro N, Saldaña M, Salinas-Rodríguez E, Robles P, Torres D, Jeldres RI (2020) Statistical study for leaching of covellite in a chloride media. Metals (Basel) 10(4):477

    Article  CAS  Google Scholar 

  14. Jeldres M, Piceros EC, Toro N, Torres D, Robles P, Leiva WH, Jeldres RI (2019) Copper tailing flocculation in seawater: relating the yield stress with fractal aggregates at varied mixing conditions. Metals (Basel) 9(12):1–13

    Article  CAS  Google Scholar 

  15. Jeldres M, Piceros E, Robles PA, Toro N, Jeldres RI (2019) Viscoelasticity of quartz and kaolin slurries in seawater: ımportance of magnesium precipitates. Metals (Basel) 9(10)

    Google Scholar 

  16. Quezada GR, Jeldres M, Toro N, Robles P, Jeldres RI (2020) Reducing the magnesium content from seawater to improve tailing flocculation: description by population balance models. Metals (Basel) 10(3)

    Google Scholar 

  17. Quezada GR, Ayala L, Leiva WH, Toro N, Toledo PG, Robles P, Jeldres RI (2020) Describing mining tailing flocculation in seawater by population balance models: effect of mixing intensity. Metals (Basel) 10(2):1–15

    Article  CAS  Google Scholar 

  18. Castellón CI, Piceros EC, Toro N, Robles P, López-Valdivieso A, Jeldres RI (2020) Depression of pyrite in seawater flotation by guar gum. Metals (Basel) 10(2)

    Google Scholar 

  19. Michaud D (2021) Froth flotation process. 911 Metallurgist. Available: https://www.911metallurgist.com/blog/froth-flotation-process. Accessed on 07 Apr2021

  20. Olin E (2021) Froth flotation circuit design and basic testwork requirements | SRK consulting. SRK Consulting. Available: https://www.srk.com/en/publications/froth-flotation-circuit-design-and-basic-testwork-requirements. Accessed on 07 Apr 2021

  21. Araya G, Toro N, Castillo J, Guzmán D, Guzmán A, Hernández P, Jeldres RI, Sepúlveda R (2020) Leaching of oxide copper ores by addition of weak acid from copper smelters. Metals (Basel) 10(5):16–20

    Article  CAS  Google Scholar 

  22. Toro N, Pérez K, Saldaña M, Jeldres RI, Jeldres M, Cánovas M (2020) Dissolution of pure chalcopyrite with manganese nodules and waste water. J Mater Res Technol 9(1):798–805

    Article  CAS  Google Scholar 

  23. Agorhom EA, Lem JP, Skinner W, Zanin M (2015) Challenges and opportunities in the recovery/rejection of trace elements in copper flotation-a review. Miner Eng 78:45–57

    Article  CAS  Google Scholar 

  24. Lucay F, Cisternas LA, Gálvez ED (2015) Global sensitivity analysis for identifying critical process design decisions. Chem Eng Res Des 103:74–83

    Article  CAS  Google Scholar 

  25. Conejeros V, Pérez K, Jeldres RI, Castillo J, Hernández P, Toro N (2020) Novel treatment for mixed copper ores: leaching ammonia—precipitation—flotation (L.A.P.F.). Miner Eng 149(December 2019):106242

    Google Scholar 

  26. Salinas-Rodriguez E, Flores-Badillo J, Hernandez-Avila J, Cerecedo-Saenz E, del M, Gutierrez-Amador P, Jeldres RI, Toro N (2020) Assessment of silica recovery from metallurgical mining waste, by means of column flotation. Metals (Basel) 10(1):1–12

    Google Scholar 

  27. Lucay F, Mellado ME, Cisternas LA, Gálvez ED (2012) Sensitivity analysis of separation circuits. Int J Miner Process 110–111:30–45

    Article  CAS  Google Scholar 

  28. Sepúlveda FD, Lucay F, González JF, Cisternas LA, Gálvez ED (2017) A methodology for the conceptual design of flotation circuits by combining group contribution, local/global sensitivity analysis, and reverse simulation. Int J Miner Process 164:56–66

    Article  CAS  Google Scholar 

  29. Mendez DA, Gálvez ED, Cisternas LA (2009) State of the art in the conceptual design of flotation circuits. Int J Miner Process 90(1–4):1–15

    Article  CAS  Google Scholar 

  30. Sepúlveda FD, Cisternas LA, Elorza MA, Gálvez ED (2014) A methodology for the conceptual design of concentration circuits: group contribution method. Comput Chem Eng 63:173–183

    Article  CAS  Google Scholar 

  31. Cisternas LA, Lucay FA, Acosta-Flores R, Gálvez ED (2018) A quasi-review of conceptual flotation design methods based on computational optimization. Miner Eng 117:24–33

    Article  CAS  Google Scholar 

  32. Xie Y, Cao B, He Y, Yang C, Gui W (2016) Reagent dosages control based on bubble size characteristics for flotation process. IET Control Theory Appl 10(12):1404–1411

    Article  Google Scholar 

  33. Lucay F, Gálvez E, Cisternas L (2019) Design of flotation circuits using Tabu-search algorithms: multispecies, equipment design, and profitability parameters. Minerals 9(3):181

    Article  Google Scholar 

  34. Massinaei M, Falaghi H, Izadi H (2013) Optimisation of metallurgical performance of industrial flotation column using neural network and gravitational search algorithm. Can Metall Q 52(2):115–122

    Article  CAS  Google Scholar 

  35. Sepúlveda FD, Cisternas LA, Gálvez ED (2014) The use of global sensitivity analysis for improving processes: applications to mineral processing. Comput Chem Eng 66:221–232

    Article  CAS  Google Scholar 

  36. Liu S (2008) Global sensitivity analysis: the primer, by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola 76(3)

    Google Scholar 

  37. Raghavan S, Hsu LL (1984) Factors affecting the flotation recovery of molybdenite from porphyry copper ores. Int J Miner Process 12(1–3):145–162

    Article  CAS  Google Scholar 

  38. Mellado M, Cisternas L, Lucay F, Gálvez E, Sepúlveda F (2018) A posteriori analysis of analytical models for heap leaching using uncertainty and global sensitivity analyses. Minerals 8(2):44

    Article  CAS  Google Scholar 

  39. Saldaña M, Ayala L, Torres D, Toro N (2020) Global sensitivity analyses of a neural networks model for a flotation circuit. Hem Ind 74(4):247–256

    Article  Google Scholar 

  40. Bergh L, Yianatos J, Acuña C, Inostroza K (2018) Adapting a phenomenological model of a rougher flotation circuit to industrial historical operating data base. IFAC-PapersOnLine 51(21):111–116

    Article  Google Scholar 

  41. Yianatos J, Carrasco C, Bergh L, Vinnett L, Torres C (2012) Modelling and simulation of rougher flotation circuits. Int J Miner Process 112–113:63–70

    Article  CAS  Google Scholar 

  42. Jahedsaravani A, Marhaban MH, Massinaei M (2014) Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks. Miner Eng 69:137–145

    Article  CAS  Google Scholar 

  43. Bascur OA, Soudek A (2019) Grinding and flotation optimization using operational intelligence. Mining Metall Explor 36(1):139–149

    Google Scholar 

  44. Dai Z, Fornasiero D, Ralston J (1999) Particle-bubble attachment in mineral flotation. J Colloid Interface Sci 217(1):70–76

    Article  CAS  Google Scholar 

  45. Xu C, Gui W, Yang C, Zhu H, Lin Y, Shi C (2012) Flotation process fault detection using output PDF of bubble size distribution. Miner Eng 26(1):5–12

    Article  CAS  Google Scholar 

  46. Guven O, Celik MS, Drelich JW (2015) Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier. Miner Eng 79:125–132

    Article  CAS  Google Scholar 

  47. Kouachi S, Vaziri Hassas B, Hassanzadeh A, Çelik MS, Bouhenguel M (2017) Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant equation. Colloids Surf A Physicochem Eng Asp 517:72–83

    Google Scholar 

  48. Ozdemir O, Karaguzel C, Nguyen AV, Celik MS, Miller JD (2009) Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Miner Eng 22(2):168–175

    Article  CAS  Google Scholar 

  49. Yianatos J, Contreras F (2010) Particle entrainment model for industrial flotation cells. Powder Technol 197(3):260–267

    Article  CAS  Google Scholar 

  50. Vallejos P, Yianatos J (2019) Analysis of industrial flotation circuits using top-of-froth and concentrate mineralogy. Miner Process Extr Metall Rev 00(00):1–10

    Google Scholar 

  51. Grau RA, Heiskanen K (2003) Gas dispersion measurements in a flotation cell. Miner Eng 16(11):1081–1089

    Article  CAS  Google Scholar 

  52. Jeldres RI, Uribe L, Cisternas LA, Gutierrez L, Leiva WH, Valenzuela J (2019) The effect of clay minerals on the process of flotation of copper ores—a critical review. Appl Clay Sci 170(July 2018):57–69

    Google Scholar 

  53. Acosta-Flores R, Lucay FA, Cisternas LA, Gálvez ED (2018) Two-phase optimization methodology for the design of mineral flotation plants, including multispecies and bank or cell models. Miner Metall Process 35(1):24–34

    Google Scholar 

  54. Gu Y, Schouwstra RP, Rule C (2014) The value of automated mineralogy. Miner Eng 58:100–103

    Article  CAS  Google Scholar 

  55. Cisternas LA, Lucay FA, Acosta-Flores R, Gálvez ED (2018) A quasi-review of conceptual flotation design methods based on computational optimization. Miner Eng 117(November 2017):24–33

    Google Scholar 

  56. Calisaya DA, López-Valdivieso A, de la Cruz MH, Gálvez EE, Cisternas LA (2016) A strategy for the identification of optimal flotation circuits. Miner Eng 96–97:157–167

    Article  CAS  Google Scholar 

  57. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models (Google eBook)

    Google Scholar 

  58. The R Foundation (2020) R: the R project for statistical computing. The R project for statistical computing. Available: https://www.r-project.org/. Accessed on 05 Apr 2020

  59. Schlesinger M, King M, Sole K, Davenport W (2011) Extractive metallurgy of copper, Fifth Edn

    Google Scholar 

  60. Bergh L, Yianatos J (2013) Control of rougher flotation circuits aided by industrial simulator. J Process Control 23(2):140–147

    Article  CAS  Google Scholar 

  61. Bulatovic SM (2007) Handbook of flotation reagents:chemistry, theory and practice volumel,first edn, 2

    Google Scholar 

  62. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270

    Article  CAS  Google Scholar 

  63. Makowski D, Naud C, Jeuffroy MH, Barbottin A, Monod H (2006) Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliab Eng Syst Saf 91(10–11):1142–1147

    Article  Google Scholar 

  64. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis. the primer

    Google Scholar 

  65. Cariboni J, Gatelli D, Liska R, Saltelli A (2007) The role of sensitivity analysis in ecological modelling. Ecol Modell 203(1–2):167–182

    Article  Google Scholar 

  66. Toro N, Pérez K, Saldaña M, Salinas-Rodríguez E, Hernández P (2020) Treatment of black copper with the use of iron scrap—part I. Hem Ind 74(4):237–245

    Article  Google Scholar 

  67. McCoy JT, Auret L (2019) Machine learning applications in minerals processing: a review. Miner Eng 132(November 2018):95–109

    Google Scholar 

  68. Saldaña M, González J, Pérez-Rey I, Jeldres M, Toro N (2020) Applying statistical analysis and machine learning for modeling the UCS from P-wave velocity, density and porosity on dry travertine. Appl Sci 10(13):4565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Saldaña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gálvez, E., Ayala, L., González, J., Saldaña, M. (2022). A Posteriori Analysis of Analytical Models for Flotation Circuits Using Sensitivity Analyses. In: Bindhu, V., R. S. Tavares, J.M., Ţălu, Ş. (eds) Proceedings of Fourth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4321-7_24

Download citation

Publish with us

Policies and ethics