Skip to main content

Phase Change Materials and Techniques to Enhance Performance of Latent Heat Storage Based on Geometrical Considerations: A Review

  • Conference paper
  • First Online:
Proceedings of Fourth International Conference on Inventive Material Science Applications

Abstract

In recent years, phase change materials (PCMs) are widely employed to store energy in the way of latent heat and for subsequent use. It is suitable for applications like exhaust heat recovery, solar heating and temperature control of building spaces. The latent heat storage process is characterized by excellent energy storage density and constant storage temperature. But there exist certain issues with Latent energy storage devices which make the systems less efficient. Thus, there is need to improve thermal performance of such systems by various means. Addition of high thermally conductive materials to PCM, use of multiple PCMs and geometrical modifications are some of the available techniques for performance enhancement of such systems. The current review paper summarizes PCMs, performance improvement techniques for latent heat storage (LHS) system with special attention to extended surfaces and geometrical alterations. The insight presented here will form a guideline for appropriate choice of PCM and thermal transfer enhancement technique to cater particular application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345

    Article  CAS  Google Scholar 

  2. Buddhi D, Sawhney RL, Seghal PN, Bansal NK (1987) A simplification of the differential thermal analysis method to determine the latent heat of fusion of phase change materials. J Phys Appl Phys 20:1601–1605

    Article  CAS  Google Scholar 

  3. George A (1989) Hand book of thermal design. In: Guyer C (ed) Phase change thermal storage materials (chapter 1). McGraw Hill Book Co.

    Google Scholar 

  4. Abhat A (1983) Low temperature latent heat storage: heat storage materials. Sol Energy 30(4):313–332

    Article  CAS  Google Scholar 

  5. Farid MM, Khudhair AM, Razack S, Al Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45:1597–1615

    Article  CAS  Google Scholar 

  6. Barreneche C, Navarro ME et al (2015) New database to select phase change materials: chemical nature, properties, and applications. J Energy Storage 3:18–24

    Article  Google Scholar 

  7. Sharma A, Sharma SD, Buddhi D (2002) Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers Manage 43:1923–1930

    Article  CAS  Google Scholar 

  8. Shukla A, Buddhi D, Sawhney RL (2008) Thermal cycling test of few selected inorganic and organic phase change materials. Renew Energy 33:2606–2614

    Article  CAS  Google Scholar 

  9. Jegadheeswaran S, Pohekar SD (2009) Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev 13:2225–2244

    Article  CAS  Google Scholar 

  10. Sebastian K, Andreas K, Dieter B (2017) Numerical analysis of shell-and-tube type latent thermal energy storage performance with different arrangements of circular fins energies, vol 10, p 274

    Google Scholar 

  11. Rathod MK, Banerjee J (2015) Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins. Appl Therm Eng 75:1084–1092

    Article  Google Scholar 

  12. Kabbra M, Groulux D (2016) Experimental investigations of a latent heat energy storage unit using finned tubes. Appl Therm Eng 101:601–611

    Article  Google Scholar 

  13. Tiari S, Qiu S, Mahdave M (2016) Discharging process of a finned heat pipe-assisted thermal energy storage system with high temperature phase change material. Energy Convers Manage 118:426–437

    Article  CAS  Google Scholar 

  14. Dhaidan NS, Khodadadi JM (2017) Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: a review. J Renew Sustain Energy 9(3)

    Google Scholar 

  15. Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K (1999) Heat transfer enhancement in a latent heat storage system. Sol Energy 65(3):171–180

    Article  CAS  Google Scholar 

  16. Ettouney HM, Alatiqi I, Al Sahali M, Al Ali SA (2004) Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew Energy 29:841–860

    Article  CAS  Google Scholar 

  17. Ismail KAR, Lino FAM (2011) Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Exp Therm Fluid Sci 35:1010–1018

    Article  CAS  Google Scholar 

  18. Liu C, Groulx D (2014) Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. Int J Therm Sci 82:100–110

    Article  Google Scholar 

  19. Hosseini MJ, Ranjbar AA, Rahimi M, Bahrampoury R (2015) Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems. Energy Build 99:263–272

    Article  Google Scholar 

  20. Zayed ME, Zhao J et al (2020) Recent progress in phase change materials storage containers: geometries, design considerations and heat transfer improvement methods. J Energy Storage 30

    Google Scholar 

  21. Sarı A, Alkan C, Karaipekli A, Uzun O (2009) Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy 83:1757–1763

    Article  Google Scholar 

  22. Nemeth B, Nemeth AS, Toth J, Dodor-kardos A, Gyenis J, Feczko T (2015) Consolidated microcapsules with double alginate shell containing paraffin for latent heat storage. Sol Energy Mater Sol Cells 143:397–405

    Article  CAS  Google Scholar 

  23. Kalaiselvam S, Veerappan M, Aaron AA, Iniyan S (2008) Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation. Int J Therm Sci 47:858–874

    Article  CAS  Google Scholar 

  24. Tao YB, He YL (2015) Numerical study on performance enhancement of shell-and-tube latent heat storage unit. Int Commun Heat Mass Transf 67:147–152

    Article  Google Scholar 

  25. Fang G, Li H, Yang F, Liu X, Wu S (2009) Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 153:217–221

    Article  CAS  Google Scholar 

  26. Peng G, Dou G, Hu Y, Sun Y, Chen Z (2020) Phase change material (PCM) microcapsules for thermal energy storage. Adv Polym Technol (article id 9490873)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta S. Mundra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mundra, S.S., Pardeshi, S.S. (2022). Phase Change Materials and Techniques to Enhance Performance of Latent Heat Storage Based on Geometrical Considerations: A Review. In: Bindhu, V., R. S. Tavares, J.M., Ţălu, Ş. (eds) Proceedings of Fourth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4321-7_18

Download citation

Publish with us

Policies and ethics