Skip to main content

r-Process Nucleosynthesis from Compact Binary Mergers

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

The merger of two neutron stars or of a neutron star and a black hole often results in the ejection of a few percents of a solar mass of matter expanding at high speed in space. Being matter coming from the violent disruption of a neutron star, these ejecta are initially very dense, hot, and extremely rich in neutrons. The few available protons form heavy nuclei (“seeds”) that absorb the more abundant free neutrons, increasing their size. The neutron density is so high that a substantial number of neutron captures occur before the resulting unstable nuclei can decay toward more stable configurations, converting neutrons into protons. Depending mostly on the initial neutron richness, this mechanism leads to the formation of up to half of the heavy elements that we observe in nature, and it is called rapid neutron capture process (“r-process”). The prediction of the precise composition of the ejecta requires a detailed knowledge of the properties of very exotic nuclei that have never been produced in a laboratory. Despite having long been a speculative scenario, nowadays several observational evidences point to compact binary mergers as one of the major sites where heavy elements are formed in the universe. The most striking one was the detection of a kilonova following the merger of a neutron star binary: the light emitted by this astronomical transient is indeed powered by the radioactive decay of freshly synthesized neutron-rich nuclei and testifies the actual nature of compact binary mergers as cosmic forges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadie J et al (2010) TOPICAL REVIEW: predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Gravity 27(17):173001

    Article  ADS  Google Scholar 

  2. Abbott BP et al (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101

    Article  ADS  Google Scholar 

  3. Abbott BP et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848(2):L12

    Article  ADS  Google Scholar 

  4. Abbott BP et al (2018) GW170817: measurements of neutron star radii and equation of state. Phys Rev Lett 121(16):161101

    Article  ADS  Google Scholar 

  5. Abbott BP et al (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Phys Rev X 9(3):031040

    Google Scholar 

  6. Barnes J, Kasen D, Wu M-R, Martínez-Pinedo G (2016) Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys J 829(2):110

    Article  ADS  Google Scholar 

  7. Bernuzzi S, Breschi M, Daszuta B, Endrizzi A, Logoteta D, Nedora V, Perego A, Radice D, Schianchi F, Zappa F, Bombaci I, Ortiz N (2020) Accretion-induced prompt black hole formation in asymmetric neutron star mergers, dynamical ejecta, and kilonova signals. Mon Not R Astron Soc 497(2):1488–1507

    Article  ADS  Google Scholar 

  8. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Modern Phys 29(4):547–650

    Article  ADS  Google Scholar 

  9. Cameron AGW (1957) Nuclear reactions in stars and nucleogenesis. Publ Astron Soc Pac 69(408):201

    Article  ADS  Google Scholar 

  10. Clayton DD (1983) Principles of stellar evolution and nucleosynthesis. University of Chigaco Press, Chicago

    Google Scholar 

  11. Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann F-K (2019) Origin of the heaviest elements: the rapid neutron-capture process. arXiv e-prints, arXiv:1901.01410

    Google Scholar 

  12. Eichler D, Livio M, Piran T, Schramm DN (1989) Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340(6229):126–128

    Article  ADS  Google Scholar 

  13. Eichler M, Arcones A, Kelic A, Korobkin O, Langanke K, Marketin T, Martinez-Pinedo G, Panov I, Rauscher T, Rosswog S, Winteler C, Zinner NT, Thielemann FK (2015) The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys J 808(1):30

    Article  ADS  Google Scholar 

  14. Fernández R, Metzger BD (2016) Electromagnetic signatures of neutron star mergers in the advanced LIGO era. Annu Rev Nuclear Part Sci 66(1):23–45

    Article  ADS  Google Scholar 

  15. Fong W, Berger E, Margutti R, Zauderer BA (2015) A decade of short-duration gamma-ray burst broadband afterglows: energetics, circumburst densities, and jet opening angles. Astrophys J 815(2):102

    Article  ADS  Google Scholar 

  16. Freiburghaus C, Rembges JF, Rauscher T, Kolbe E, Thielemann FK, Kratz KL, Pfeiffer B, Cowan JJ (1999) The astrophysical r-process: a comparison of calculations following adiabatic expansion with classical calculations based on neutron densities and temperatures. Astrophys J 516(1):381–398

    Article  ADS  Google Scholar 

  17. Freiburghaus C, Rosswog S, Thielemann FK (1999) R-process in neutron star mergers. Astrophys J Lett 525(2):L121–L124

    Article  ADS  Google Scholar 

  18. Ghirlanda G, Salafia OS, Pescalli A, Ghisellini G, Salvaterra R, Chassande-Mottin E, Colpi M, Nappo F, D’Avanzo P, Melandri A, Bernardini MG, Branchesi M, Campana S, Ciolfi R, Covino S, Götz D, Vergani SD, Zennaro M, Tagliaferri G (2016) Short gamma-ray bursts at the dawn of the gravitational wave era. Astron Astrophys 594:A84

    Article  Google Scholar 

  19. Goriely S, Sida JL, Lemaître JF, Panebianco S, Dubray N, Hilaire S, Bauswein A, Janka HT (2013) New fission fragment distributions and r-process origin of the rare-earth elements. Phys Rev Lett 111(24):242502

    Article  ADS  Google Scholar 

  20. Hansen TT et al (2017) An r-process enhanced star in the dwarf galaxy tucana III. Astrophys J 838(1):44

    Article  ADS  Google Scholar 

  21. Hoffman RD, Woosley SE, Qian YZ (1997) Nucleosynthesis in neutrino-driven winds. II. Implications for heavy element synthesis. Astrophys J 482(2):951–962

    Google Scholar 

  22. Honda S, Aoki W, Kajino T, Ando H, Beers TC, Izumiura H, Sadakane K, Takada-Hidai M (2004) Spectroscopic studies of extremely metal-poor stars with the subaru high dispersion spectrograph. II. The r-process elements, including thorium. Astrophys J 607(1):474–498

    Article  ADS  Google Scholar 

  23. Hotokezaka K, Wanajo S, Tanaka M, Bamba A, Terada Y, Piran T (2016) Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission. Mon Not R Astron Soc 459(1):35–43

    Article  ADS  Google Scholar 

  24. Hotokezaka K, Beniamini P, Piran T (2018) Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int J Modern Phys D 27(13):1842005

    Article  ADS  MathSciNet  Google Scholar 

  25. Hotokezaka K, Piran T, Paul M (2015) Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. Nat Phys 11(12):1042

    Article  Google Scholar 

  26. Hulse RA, Taylor JH (1975) Discovery of a pulsar in a binary system. Astrophys J Lett 195:L51–L53

    Article  ADS  Google Scholar 

  27. Iliadis C (2007) Nuclear physics of stars. Wiley-VCH, Weinheim

    Book  Google Scholar 

  28. Ji AP, Frebel A, Chiti A, Simon JD (2016) R-process enrichment from a single event in an ancient dwarf galaxy. Nature 531(7596):610–613

    Article  ADS  Google Scholar 

  29. Just O, Bauswein A, Ardevol Pulpillo R, Goriely S, Janka HT (2015) Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon Not R Astron Soc 448(1):541–567

    Article  ADS  Google Scholar 

  30. Kasen D, Badnell NR, Barnes J (2013) Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys J 774(1):25

    Article  ADS  Google Scholar 

  31. Kasen D, Metzger B, Barnes J, Quataert E, Ramirez-Ruiz E (2017) Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551(7678):80–84

    Article  ADS  Google Scholar 

  32. Korobkin O, Rosswog S, Arscones A, Winteler C On the astrophysical robustness of the neutron star merger r-process. Mon Not R Astron Soc 426(3):1940–1949 (2012)

    Article  ADS  Google Scholar 

  33. Kratz K-L, Bitouzet J-P, Thielemann F-K, Moeller P, Pfeiffer B (1993) Isotopic r-process abundances and nuclear structure far from stability: implications for the r-process mechanism. Astrophys J 403:216

    Article  ADS  Google Scholar 

  34. Lattimer JM, Schramm DN (1974) Black-hole-neutron-star collisions. Astrophys J Lett 192:L145–L147

    Article  ADS  Google Scholar 

  35. Lattimer JM, Schramm DN (1976) The tidal disruption of neutron stars by black holes in close binaries. Astrophys J 210:549–567

    Article  ADS  Google Scholar 

  36. Li L-X, Paczyński B (1998) Transient events from neutron star mergers. Astrophys J Lett 507(1):L59–L62

    Article  ADS  Google Scholar 

  37. Lippuner J, Fernández R, Roberts LF, Foucart F, Kasen D, Metzger BD, Ott CD Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon Not R Astron Soc 472(1):904–918 (2017)

    Article  ADS  Google Scholar 

  38. Lippuner J, Roberts LF (2015) r-process lanthanide production and heating rates in kilonovae. Astrophys J 815(2):82

    Google Scholar 

  39. Lippuner J, Roberts LF (2017) SkyNet: a modular nuclear reaction network library. Astrophys J Suppl Ser 233(2):18

    Article  ADS  Google Scholar 

  40. Martin D, Perego A, Arcones A, Thielemann FK, Korobkin O, Rosswog S (2015) Neutrino-driven winds in the aftermath of a neutron star merger: nucleosynthesis and electromagnetic transients. Astrophys J 813(1):2

    Article  ADS  Google Scholar 

  41. Martínez-Pinedo G (2008) Selected topics in nuclear astrophysics. Eur Phys J Spec Top 156(1):123–149

    Article  Google Scholar 

  42. Martínez-Pinedo G, Fischer T, Lohs A, Huther L (2012) Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys Rev Lett 109(25):251104

    Article  ADS  Google Scholar 

  43. Mendoza-Temis JDJ, Wu M-R, Langanke K, Martínez-Pinedo G, Bauswein A, Janka H-T (2015) Nuclear robustness of the r process in neutron-star mergers. Phys Rev C 92(5):055805

    Article  ADS  Google Scholar 

  44. Metzger BD, Martínez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D, Thomas R, Nugent P, Panov IV, Zinner NT (2010) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc 406(4):2650–2662

    Article  ADS  Google Scholar 

  45. Metzger BD (2019) Kilonovae. Living Rev Relat 23(1):1

    ADS  Google Scholar 

  46. Oertel M, Hempel M, Klähn T, Typel S (2017) Equations of state for supernovae and compact stars. Rev Modern Phys 89(1):015007

    Article  ADS  Google Scholar 

  47. Perego A, Rosswog S, Cabezón RM, Korobkin O, Käppeli R, Arcones A, Liebendörfer M (2014) Neutrino-driven winds from neutron star merger remnants. Mon Not R Astron Soc 443(4):3134–3156

    Article  ADS  Google Scholar 

  48. Perego A, Radice D, Bernuzzi S (2017) AT 2017gfo: an anisotropic and three-component kilonova counterpart of GW170817. Astrophys J Lett 850(2):L37

    Article  ADS  Google Scholar 

  49. Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551(7678):67–70

    Article  ADS  Google Scholar 

  50. Pol N, McLaughlin M, Lorimer DR (2019) Future prospects for ground-based gravitational-wave detectors: the galactic double neutron star merger rate revisited. Astrophys J 870(2):71

    Article  ADS  Google Scholar 

  51. Prantzos N, Abia C, Cristallo S, Limongi M, Chieffi A (2020) Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r-process components. Mon Not R Astron Soc 491(2):1832–1850

    ADS  Google Scholar 

  52. Qian YZ, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331

    Google Scholar 

  53. Radice D, Bernuzzi S, Perego A (2020) The dynamics of binary neutron star mergers and GW170817. Annu Rev Nuclear Part Sci 70(1):annurev

    Google Scholar 

  54. Radice D, Perego A, Hotokezaka K, Fromm SA, Bernuzzi S, Roberts LF (2018) Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys J 869(2):130

    Article  ADS  Google Scholar 

  55. Roberts LF, Lippuner J, Duez MD, Faber JA, Foucart F, Lombardi JC Jr, Ning S, Ott CD, Ponce M (2017) The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers. Mon Not R Astron Soc 464(4):3907–3919

    Article  ADS  Google Scholar 

  56. Roederer IU, Preston GW, Thompson IB, Shectman SA, Sneden C, Burley GS, Kelson DD (2014) A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars. Astron J 147(6):136

    Google Scholar 

  57. Rosswog S, Feindt U, Korobkin O, Wu MR, Sollerman J, Goobar A, Martinez-Pinedo G (2017) Detectability of compact binary merger macronovae. Class Quantum Gravity 34(10):104001

    Article  ADS  Google Scholar 

  58. Rosswog S, Korobkin O, Arcones A, Thielemann FK, Piran T (2014) The long-term evolution of neutron star merger remnants – I. The impact of r-process nucleosynthesis. Mon Not R Astron Soc 439(1):744–756

    Article  ADS  Google Scholar 

  59. Shibata M, Hotokezaka K (2019) Merger and mass ejection of neutron star binaries. Annu Rev Nuclear Part Sci 69:41–64

    Article  ADS  Google Scholar 

  60. Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79

    Article  ADS  Google Scholar 

  61. Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288

    Article  ADS  Google Scholar 

  62. Symbalisty E, Schramm DN (1982) Neutron star collisions and the r-process. Astrophys J Lett 22:143

    ADS  Google Scholar 

  63. Tanaka M et al (2017) Kilonova from post-merger ejecta as an optical and near-infrared counterpart of GW170817. Publ Astron Soc Jpn 69(6):102

    ADS  Google Scholar 

  64. Tanaka M, Hotokezaka K (2013) Radiative transfer simulations of neutron star merger ejecta. Astrophys J 775(2):113

    Article  ADS  Google Scholar 

  65. Tanvir NR et al (2017) The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys J Lett 848(2):L27

    Article  ADS  Google Scholar 

  66. Tanvir NR, Levan AJ, Fruchter AS, Hjorth J, Hounsell RA, Wiersema K, Tunnicliffe RL (2013) A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500(7464):547–549

    Article  ADS  Google Scholar 

  67. Thielemann FK, Eichler M, Panov IV, Wehmeyer B (2017) Neutron star mergers and nucleosynthesis of heavy elements. Annu Rev Nuclear Part Sci 67:253–274

    Article  ADS  Google Scholar 

  68. Villar VA, Guillochon J, Berger E, Metzger BD, Cowperthwaite PS, Nicholl M, Alexander KD, Blanchard PK, Chornock R, Eftekhari T, Fong W, Margutti R, Williams PKG (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851(1):L21

    Article  ADS  Google Scholar 

  69. Wanajo S, Janka H-T, Müller B (2011) Electron-capture supernovae as the origin of elements beyond iron. Astrophys J Lett 726(2):L15

    Article  ADS  Google Scholar 

  70. Wanajo S, Sekiguchi Y, Nishimura N, Kiuchi K, Kyutoku K, Shibata M (2014) Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys J Lett 789(2):L39

    Article  ADS  Google Scholar 

  71. Wanderman D Piran T (2015) The rate, luminosity function and time delay of non-Collapsar short GRBs. Mon Not R Astron Soc 448(4):3026–3037

    Article  ADS  Google Scholar 

  72. Watson D, Hansen CJ, Selsing J, Koch A, Malesani DB, Andersen AC, Johan Fynbo PU, Arcones A, Bauswein A, Covino S, Grado A, Heintz KE, Hunt L, Kouveliotou C, Leloudas G, Levan AJ, Mazzali P, Pian E (2019) Identification of strontium in the merger of two neutron stars. Nature 574(7779):497–500

    Article  ADS  Google Scholar 

  73. Winteler C, Käppeli R, Perego A, Arcones A, Vasset N, Nishimura N, Liebendörfer M, Thielemann FK (2012) Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys J Lett 750(1):L22

    Article  ADS  Google Scholar 

  74. Wollaeger RT, Korobkin O, Fontes CJ, Rosswog SK, Even WP, Fryer CL, Sollerman J, Hungerford AL, van Rossum DR, Wollaber AB (2018) Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. Mon Not R Astron Soc 478(3):3298–3334

    Article  ADS  Google Scholar 

  75. Wu M-R, Barnes J, Martínez-Pinedo G, Metzger BD (2019) Fingerprints of heavy-element nucleosynthesis in the late-time lightcurves of kilonovae. Phys Rev Lett 122(6):062701

    Article  ADS  Google Scholar 

  76. Wu M-R, Fernández R, Martínez-Pinedo G, Metzger BD (2016) Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon Not R Astron Soc 463(3):2323–2334

    Article  ADS  Google Scholar 

  77. Zhu Y, Wollaeger RT, Vassh N, Surman R, Sprouse TM, Mumpower MR, Möller P, McLaughlin GC, Korobkin O, Kawano T, Jaffke PJ, Holmbeck EM, Fryer CL, Even WP, Couture AJ, Barnes J (2018) Californium-254 and kilonova light curves. Astrophys J Lett 863(2):L23

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albino Perego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Perego, A., Thielemann, F.K., Cescutti, G. (2022). r-Process Nucleosynthesis from Compact Binary Mergers. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_13

Download citation

Publish with us

Policies and ethics