Skip to main content

Biomechanics of Magnesium-Based Implant During Tissue Repair

  • Chapter
  • First Online:
Biomechanics of Injury and Prevention
  • 470 Accesses

Abstract

Biodegradable (bioabsorbable) implants provide support and fixation to the damaged tissues temporarily. After tissue repair, the implants fully degrade and are absorbed by human body, avoiding many disadvantages of permanent implants. Magnesium (Mg) and its alloys are suitable for biodegradable load-bearing implants due to their good mechanical properties, biodegradability and biocompatibility. Mg-based implants are in the biomechanical environments during tissue repair. The degradation (corrosion) behaviors under loadings are important for the implants. In this chapter, the development, degradation mechanism and study method of Mg-based implants were introduced, and the effects of biomechanical factors on the degradation behaviors of Mg-based implants were investigated by numerical simulation and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crubezy E, Murail P, Girard L, Bernadou JP (1998) False teeth of the Roman world. Nature 391(6662):29

    Article  CAS  Google Scholar 

  2. Wang JL, Xu JK, Hopkins C, Chow DHK, Qin L (2020) Biodegradable magnesium-based implants in Orthopedics-a general review and perspectives. Advanced Science:1902443. https://doi.org/10.1002/advs.201902443

  3. Chen YJ, Xu ZG, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573. https://doi.org/10.1016/j.actbio.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  4. Han HS, Loffredo S, Jun I, Edwards J, Kim YC, Seok HK, Witte F, Mantovani D, Glyn-Jones S (2019) Current status and outlook on the clinical translation of biodegradable metals. Mater Today 23:57–71. https://doi.org/10.1016/j.mattod.2018.05.018

    Article  CAS  Google Scholar 

  5. Vormann J (2003) Magnesium: nutrition and metabolism. Mol Asp Med 24(1):27–37

    Article  CAS  Google Scholar 

  6. Elin RJ (1988) Magnesium metabolism in health and disease. Dis Mon 34(4):166–218

    Article  Google Scholar 

  7. Huse EC (1878) A new ligature? Chicago Med J Exam 1878:172

    Google Scholar 

  8. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692. https://doi.org/10.1016/j.actbio.2010.02.028

    Article  CAS  PubMed  Google Scholar 

  9. Ikeo N, Nakamura R, Naka K, Hashimoto T, Yoshida T, Urade T, Fukushima K, Yabuuchi H, Fukumoto T, Ku Y, Mukai T (2016) Fabrication of a magnesium alloy with excellent ductility for biodegradable clips. Acta Biomater 29:468–476. https://doi.org/10.1016/j.actbio.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  10. Hu TZ, Yang JL, Cui K, Rao Q, Yin TY, Tan LL, Zhang Y, Li ZG, Wang GX (2015) Controlled slow-release drug-eluting stents for the prevention of coronary restenosis: recent progress and future prospects. ACS Appl Mater Interfaces 7(22):11695–11712. https://doi.org/10.1021/acsami.5b01993

    Article  CAS  PubMed  Google Scholar 

  11. Hu TZ, Yang C, Lin S, Yu QS, Wang GX (2018) Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives. Materials Science & Engineering C-Materials for Biological Applications 91:163–178. https://doi.org/10.1016/j.msec.2018.04.100

    Article  CAS  Google Scholar 

  12. Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AGMR, Falotico R, Jaeger J, Popma JJ, Serruys PW (2001) Sustained suppression of neointimal proliferation by sirolimus-eluting stents—one-year angiographic and intravascular ultrasound follow-up. Circulation 104(17):2007–2011. https://doi.org/10.1161/hc4201.098056

    Article  CAS  PubMed  Google Scholar 

  13. Cherny NI (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 301(2):61–68

    Article  Google Scholar 

  14. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316(12):701–706

    Article  CAS  Google Scholar 

  15. Levesque J, Hermawan H, Dube D, Mantovani D (2008) Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater 4(2):284–295. https://doi.org/10.1016/j.actbio.2007.09.012

    Article  CAS  PubMed  Google Scholar 

  16. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369(9576):1869–1875. https://doi.org/10.1016/S0140-6736(07)60853-8

    Article  CAS  PubMed  Google Scholar 

  17. Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, Serruys PW (2017) Bioresorbable scaffold the emerging reality and future directions. Circ Res 120(8):1341–1352. https://doi.org/10.1161/Circresaha.117.310275

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Garcia HM, Haude M, Kuku K, Hideo-Kajita A, Ince H, Abizaid A, Tolg R, Lemos PA, von Birgelen C, Christiansen EH, Wijns W, Escaned J, Dijkstra J, Waksman R (2018) In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris—DREAMS 2G) in de novo coronary lesions: insights from the BIOSOLVE-II first-in-man trial. Int J Cardiol 255:22–28. https://doi.org/10.1016/j.ijcard.2017.12.053

    Article  PubMed  Google Scholar 

  19. Lambotte A (1909) Technique et indications de la prothèse perdue dans la traitement des fractures. Presse Med Belge 17:321–323

    Google Scholar 

  20. Lambotte A (1932) L'utilisation du magnésium comme matériel perdu dans l'ostéosynthèse. Bull Mém Soc Nat Cir 28:1325–1334

    Google Scholar 

  21. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26(17):3557–3563. https://doi.org/10.1016/j.biomaterials.2004.09.049

    Article  CAS  PubMed  Google Scholar 

  22. Huang SB, Wang BJ, Zhang XZ, Lu FQ, Wang ZP, Tian SM, Li DY, Yang JH, Cao F, Cheng LL, Gao ZQ, Li YD, Qin KR, Zhao DW (2020) High-purity weight-bearing magnesium screw: translational application in the healing of femoral neck fracture. Biomaterials 238. https://doi.org/10.1016/j.biomaterials.2020.119829

  23. Zhao DW, Witte F, Lu FQ, Wang JL, Li JL, Qin L (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 112:287–302. https://doi.org/10.1016/j.biomaterials.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  24. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72. https://doi.org/10.1016/j.cossms.2009.04.001

    Article  CAS  Google Scholar 

  25. Zeng RC, Dietzel W, Witte F, Hort N, Blawert C (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10(8):B3–B14. https://doi.org/10.1002/adem.200800035

    Article  CAS  Google Scholar 

  26. Cho SY, Chae SW, Choi KW, Seok HK, Han HS, Yang SJ, Kim YY, Kim JT, Jung JY, Assad M (2012) Load-bearing capacity and biological allowable limit of biodegradable metal based on degradation rate in vivo journal of biomedical materials research part B applied. Biomaterials 100B(6):1535–1544

    CAS  Google Scholar 

  27. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1(1):11–33

    Article  CAS  Google Scholar 

  28. Nordlien JH, Ono S, Masuko N, Nisancioglu K (1997) A TEM investigation of naturally formed oxide films on pure magnesium. Corros Sci 39(8):1397–1414

    Article  CAS  Google Scholar 

  29. Xu LP, Yu GN, Zhang E, Pan F, Yang K (2007) In vivo corrosion behavior of mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A 83A(3):703–711. https://doi.org/10.1002/jbm.a.31273

    Article  CAS  Google Scholar 

  30. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7):1013–1018. https://doi.org/10.1016/j.biomaterials.2005.07.037

    Article  CAS  PubMed  Google Scholar 

  31. Winzer N, Atrens A, Song GL, Ghali E, Dietzel W, Kainer KU, Hort N, Blawert C (2005) A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv Eng Mater 7(8):659–693. https://doi.org/10.1002/adem.200500071

    Article  CAS  Google Scholar 

  32. Fairman L, Bray HJ (1971) Intergranular stress-corrosion crack propagation in magnesium aluminium alloys. Br Corros J 6(4):170–174

    Article  CAS  Google Scholar 

  33. Logan HL (1952) Film-rupture mechanism of stress corrosion. J Res Natl Bur Stand 48(2):99–105

    Article  CAS  Google Scholar 

  34. Stampella RS, Procter RPM, Ashworth V (1984) Environmentally-induced cracking of magnesium. Corros Sci 24(4):325–341

    Article  CAS  Google Scholar 

  35. Ebtehaj K, Hardie D, Parkins RN (1988) The influence of chloride-chromate solution composition on the stress corrosion cracking of a mg–Al alloy. ChemInform 28(8):811–821

    CAS  Google Scholar 

  36. Gastaldi D, Sassi V, Petrini L, Vedani M, Trasatti S, Migliavacca F (2011) Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J Mech Behav Biomed Mater 4(3):352–365. https://doi.org/10.1016/j.jmbbm.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  37. Grogan JA, O'Brien BJ, Leen SB, McHugh PE (2011) A corrosion model for bioabsorbable metallic stents. Acta Biomater 7(9):3523–3533. https://doi.org/10.1016/j.actbio.2011.05.032

    Article  CAS  PubMed  Google Scholar 

  38. Gao YM, Wang LZ, Gu XN, Chu ZW, Guo M, Fan YB (2018) A quantitative study on magnesium alloy stent biodegradation. J Biomech 74:98–105. https://doi.org/10.1016/j.jbiomech.2018.04.027

    Article  PubMed  Google Scholar 

  39. Da Costa-Mattos HS, Bastos IN, Gomes JACP (2008) A simple model for slow strain rate and constant load corrosion tests of austenitic stainless steel in acid aqueous solution containing sodium chloride. Corros Sci 50(10):2858–2866. https://doi.org/10.1016/j.corsci.2008.07.020

    Article  CAS  Google Scholar 

  40. Grogan JA, Leen SB, McHugh PE (2013) Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34(33):8049–8060. https://doi.org/10.1016/j.biomaterials.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  41. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R (2004) Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol 17(6):391–395. https://doi.org/10.1111/j.1540-8183.2004.04081.x

    Article  PubMed  Google Scholar 

  42. Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F (2008) On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 41(6):1206–1212. https://doi.org/10.1016/j.jbiomech.2008.01.027

    Article  PubMed  Google Scholar 

  43. Grogan JA, Leen SB, McHugh PE (2014) A physical corrosion model for bioabsorbable metal stents. Acta Biomater 10(5):2313–2322. https://doi.org/10.1016/j.actbio.2013.12.059

    Article  CAS  PubMed  Google Scholar 

  44. Val DV, Trapper PA (2008) Probabilistic evaluation of initiation time of chloride-induced corrosion. Reliability Engineering & System Safety 93(3):364–372. https://doi.org/10.1016/j.ress.2006.12.010

    Article  Google Scholar 

  45. Du X, Jin L (2014) Meso-scale numerical investigation on cracking of cover concrete induced by corrosion of reinforcing steel. Eng Fail Anal 39:21–33. https://doi.org/10.1016/j.engfailanal.2014.01.011

    Article  Google Scholar 

  46. Jin L, Zhang R, Du X, Li Y (2015) Investigation on the cracking behavior of concrete cover induced by corner located rebar corrosion. Eng Fail Anal 52:129–143. https://doi.org/10.1016/j.engfailanal.2015.03.019

    Article  CAS  Google Scholar 

  47. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Phys Heart Circ Phys 289(5):H2048–H2058. https://doi.org/10.1152/ajpheart.00934.2004

    Article  CAS  Google Scholar 

  48. Wu W, Gastaldi D, Yang K, Tan LL, Petrini L, Migliavacca F (2011) Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science and Engineering B-Advanced Functional Solid-State Materials 176(20):1733–1740. https://doi.org/10.1016/j.mseb.2011.03.013

    Article  CAS  Google Scholar 

  49. Yang L, Zhang EL (2009) Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 29(5):1691–1696. https://doi.org/10.1016/j.msec.2009.01.014

    Article  CAS  Google Scholar 

  50. Kunjukunju S, Roy A, Ramanathan M, Lee B, Candiello JE, Kumta PN (2013) A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater 9(10):8690–8703

    Article  CAS  Google Scholar 

  51. Bowen PK, Drelich J, Goldman J (2013) A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior. Materials Science & Engineering C-Materials for Biological Applications 33(8):5064–5070. https://doi.org/10.1016/j.msec.2013.08.042

    Article  CAS  Google Scholar 

  52. Wang J, He YH, Maitz MF, Collins B, Xiong KQ, Guo LS, Yun YH, Wan GJ, Huang N (2013) A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Acta Biomater 9(10):8678–8689. https://doi.org/10.1016/j.actbio.2013.02.041

    Article  CAS  PubMed  Google Scholar 

  53. Wang J, Witte F, Xi T, Zheng Y, Yang K, Yang Y, Zhao D, Meng J, Li Y, Li W (2015) Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater 21:237–249

    Article  Google Scholar 

  54. Hiromoto S (2015) Self-healing property of hydroxyapatite and octacalcium phosphate coatings on pure magnesium and magnesium alloy. Corros Sci 100:284–294

    Article  CAS  Google Scholar 

  55. Song GL, Atrens A, StJohn D (2001) An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. Magnesium Technology 2001:255–262

    Google Scholar 

  56. Abidin NIZ, Rolfe B, Owen H, Malisano J, Martin D, Hofstetter J, Uggowitzer PJ, Atrens A (2013) The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros Sci 75(7):354–366. https://doi.org/10.1016/j.corsci.2013.06.019

    Article  CAS  Google Scholar 

  57. Kuhlmann J, Bartsch I, Willbold E, Schuchardt S, Holz O, Hort N, Hoche D, Heineman WR, Witte F (2013) Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater 9(10):8714–8721. https://doi.org/10.1016/j.actbio.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  58. Sanchez AHM, Luthringer BJC, Feyerabend F, Willumeit R (2015) Mg and mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater 13:16–31. https://doi.org/10.1016/j.actbio.2014.11.048

    Article  CAS  Google Scholar 

  59. Wang SD, Xu DK, Wang BJ, Sheng LY, Han EH, Dong C (2016) Effect of solution treatment on stress corrosion cracking behavior of an as-forged mg-Zn-Y-Zr alloy. Sci Rep 6:29471. https://doi.org/10.1038/Srep29471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harandi SE, Banerjee PC, Easton CD, Raman RKS (2017) Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy. Materials Science & Engineering C-Materials for Biological Applications 80:335–345. https://doi.org/10.1016/j.msec.2017.06.002

    Article  CAS  Google Scholar 

  61. Ge MZ, Xiang JY, Yang L, Wang JT (2017) Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid. Surface & Coatings Technology 310:157–165. https://doi.org/10.1016/j.surfcoat.2016.12.093

    Article  CAS  Google Scholar 

  62. Jafari S, Raman RKS (2017) In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. Materials Science & Engineering C-Materials for Biological Applications 78:278–287. https://doi.org/10.1016/j.msec.2017.04.079

    Article  CAS  Google Scholar 

  63. Guo M, Chu ZW, Yao J, Feng WT, Wang YX, Wang LZ, Fan YB (2016) The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym Degrad Stab 124:95–100. https://doi.org/10.1016/j.polymdegradstab.2015.12.019

    Article  CAS  Google Scholar 

  64. Chin DA, Heiller A, Cui B, Gu L (2016) Effects of tensile stress on the corrosion rate of magnesium. Journal of Medical Devices 10(2):020926

    Article  Google Scholar 

  65. Li X, Chu CL, Wei YL, Qi CX, Bai J, Guo C, Xue F, Lin PH, Chu PK (2017) In vitro degradation kinetics of pure PLA and mg/PLA composite: effects of immersion temperature and compression stress. Acta Biomater 48:468–478. https://doi.org/10.1016/j.actbio.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  66. Grogan JA, Gastaldi D, Castelletti M, Migliavacca F, Dubini G, McHugh PE (2013) A novel flow chamber for biodegradable alloy assessment in physiologically realistic environments. Rev Sci Instrum 84(9). https://doi.org/10.1063/1.4821498

  67. Wang J, Jang Y, Wan GJ, Giridharan V, Song GL, Xu ZG, Koo Y, Qi PK, Sankar J, Huang N, Yun YH (2016) Flow-induced corrosion of absorbable magnesium alloy: in-situ and real-time electrochemical study. Corros Sci 104:277–289. https://doi.org/10.1016/j.corsci.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  68. Liu D, Hu S, Yin X, Liu J, Jia Z, Li Q (2018) Degradation mechanism of magnesium alloy stent under simulated human micro-stress environment. Mater Sci Eng C Mater Biol Appl 84:263

    Article  CAS  Google Scholar 

  69. Chaya A, Yoshizawa S, Verdelis K, Myers N, Costello BJ, Chou DT, Pal S, Maiti S, Kumta PN, Sfeir C (2015) In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater 18:262–269. https://doi.org/10.1016/j.actbio.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  70. Schaller B, Saulacic N, Beck S, Imwinkelried T, Liu EWY, Nakahara K, Hofstetter W, Iizuka T (2017) Osteosynthesis of partial rib osteotomy in a miniature pig model using human standard-sized magnesium plate/screw systems: effect of cyclic deformation on implant integrity and bone healing. J Cranio-Maxillofac Surg 45(6):862–871. https://doi.org/10.1016/j.jcms.2017.03.018

    Article  Google Scholar 

  71. Gao YM, Wang LZ, Li LH, Gu XN, Zhang K, Xia J, Fan YB (2019) Effect of stress on corrosion of high-purity magnesium in vitro and in vivo. Acta Biomater 83:477–486. https://doi.org/10.1016/j.actbio.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  72. Feins EN, Lee Y, O'Cearbhaill ED, Vasilyev NV, Shimada S, Friehs I, Perrin D, Hammer PE, Yamauchi H, Marx G, Gosline A, Arabagi V, Karp JM, del Nido PJ (2017) A growth-accommodating implant for paediatric applications. Nature Biomedical Engineering 1(10):818–825. https://doi.org/10.1038/s41551-017-0142-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raman RKS, Jafari S, Harandi SE (2015) Corrosion fatigue fracture of magnesium alloys in bioimplant applications: a review. Eng Fract Mech 137:97–108. https://doi.org/10.1016/j.engfracmech.2014.08.009

    Article  Google Scholar 

  74. Gu XN, Zhou WR, Zheng YF, Cheng Y, Wei SC, Zhong SP, Xi TF, Chen LJ (2010) Corrosion fatigue behaviors of two biomedical mg alloys-AZ91D and WE43-in simulated body fluid. Acta Biomater 6(12):4605–4613. https://doi.org/10.1016/j.actbio.2010.07.026

    Article  CAS  PubMed  Google Scholar 

  75. Peron M, Torgersen J, Berto F (2017) Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure. Metals 7:252. https://doi.org/10.3390/Met7070252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubo Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y., Wang, L., Fan, Y. (2022). Biomechanics of Magnesium-Based Implant During Tissue Repair. In: Fan, Y., Wang, L. (eds) Biomechanics of Injury and Prevention. Springer, Singapore. https://doi.org/10.1007/978-981-16-4269-2_11

Download citation

Publish with us

Policies and ethics