Skip to main content

Venom-Derived Peptides Inhibiting Voltage-Gated Sodium and Calcium Channels in Mammalian Sensory Neurons

  • Chapter
  • First Online:
Ion Channels in Biophysics and Physiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1349))

Abstract

Pain management is a serious worldwide problem that affects the physical and mental health of all affected humans. As an alternative to opioids, pharmaceutical companies are seeking other sources of potential analgesics that have fewer adverse side effects. Animal venoms are a natural cocktail of a complex mixture of salts, peptides, and proteins. Most animals that produce venoms release them for the purpose of prey capture and/or defense against other vertebrates. Over the last 30 years, many venom-derived peptides have been shown to be active against numerous voltage-gated ion channels in the mammalian somatosensory nervous system. Voltage-gated ion channels and in particular sodium, potassium, and calcium channels are fundamental to the transmission of all somatosensory information from the periphery to the central nervous system. This information can be chemical, mechanical, or thermal sensation that can result from touch to a more painful sensation of tissue injury. These voltage-gated ion channels open or close in response to changes in membrane potential to permit ion movement across the cell membrane. In this chapter, we screened the scientific literature characterizing venom-derived peptides that target voltage-gated sodium and calcium channels and exhibit analgesic properties. Depending on peptide activity, these can either inhibit voltage-gated sodium or calcium channels completely by binding to the pore of the channel or modulate the activity by binding to other regions such as the voltage sensor of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. Physiol Rev 101(1):259–301

    Article  PubMed  Google Scholar 

  2. Bhattacharjee P, Bhattacharyya D (2014) Therapeutic use of snake venom components: a voyage from ancient to modern India. Mini-Rev Org Chem 11:45–54

    Article  CAS  Google Scholar 

  3. Utkin YN (2015) Animal venom studies: current benefits and future developments. World J Biol Chem 6:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  4. Panagides N, Jackson TN, Ikonomopoulou MP, Arbuckle K, Pretzler R, Yang DC, et al (2017) How the cobra got its flesh-eating venom: cytotoxicity as a defensive innovation and its co-evolution with hooding, aposematic marking, and spitting. Toxins 9:103

    Article  PubMed Central  CAS  Google Scholar 

  5. Jami S, Erickson A, Brierley SM, Vetter I (2017) Pain causing venom peptides: insights into sensory neuron pharmacology. Toxins 10(1):15

    Article  PubMed Central  CAS  Google Scholar 

  6. Bourinet E, Zamponi GW (2017) Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology 127:109–115

    Article  CAS  PubMed  Google Scholar 

  7. Ryu JH, Jung HJ, Konishi S, Kim HH, Park ZY, Kim JI (2017) Structure-activity relationships of ω-Agatoxin IVA in lipid membranes. Biochem Biophys Res Comm 482(1):170–175

    Article  CAS  PubMed  Google Scholar 

  8. Sousa SR, McArthur JR, Brust A, Bhola RF, Rosengren KJ, Ragnarsson L, Dutertre S, Alewood PF, Christie MJ, Adams DJ, Vetter I, Lewis RJ (2018) Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Sci Rep 8(1):13397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135(Pt. 9):2585–2612

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368

    Article  CAS  PubMed  Google Scholar 

  11. Ray P, Torck A, Quigley L, Wangzhou A, Neiman M, Rao C, Lam T, Kim JY, Kim TH, Zhang MQ, Dussor G, Price TJ (2018) Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq-based resource for pain and sensory neuroscience research. Pain 159(7):1325–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cardoso FC (2020) Multi-targeting sodium and calcium channels using venom peptides for the treatment of complex ion channels-related diseases. Biochem Pharmacol 181:114107. https://doi.org/10.1016/j.bcp.2020.114107

    Article  CAS  PubMed  Google Scholar 

  13. Yu FH, Catterall WA (2003) Overview of voltage-gated sodium channel family. Genome Biol 4(207):1–7

    Google Scholar 

  14. Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147:1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dib-Hajj SD, Yang Y, Black JA, Waxman SG (2013) The NaV1.7 sodium channel: from molecule to man. Nat Rev Neurosci 14:49–62

    Article  CAS  PubMed  Google Scholar 

  16. Körner J, Lampert A (2020) Sodium channels. In: Fritzsch B (ed) The senses: a comprehensive reference, 2nd edn. Academic Press, Cambridge, MA, pp 120–141

    Chapter  Google Scholar 

  17. Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, Yan N (2019) Molecular basis for pore blockade of human Na+ channel Nav1.2 by the μ-conotoxin KIIIA. Science 363(6433):1309–1313

    Article  CAS  PubMed  Google Scholar 

  18. Cain SM, Snutch TP (2011) Voltage-gated calcium channels and disease. Biofactors 37(3):197–205. https://doi.org/10.1002/biof.158

    Article  CAS  PubMed  Google Scholar 

  19. Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW (2014) Calcium-permeable ion channels in pain signaling. Physiol Rev 94(1):81–140. https://doi.org/10.1152/physrev.00023.2013

    Article  CAS  PubMed  Google Scholar 

  20. Zamponi GW (2015) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 15:19–34

    Article  PubMed  CAS  Google Scholar 

  21. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International union of pharmacology. XLVIII Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57(4):411–425

    Article  CAS  PubMed  Google Scholar 

  22. Namkung Y, Skrypnyk N, Jeong MJ, Lee T, Lee MS, Kim HL, Chin H, Suh PG, Kim SS, Shin HS (2001) Requirement for the L-type calcium channel ɑ1D subunit in postnatal pancreatic beta cell generation. J Clin Invest 108:1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Curtis BM, Catterall WA (1984) Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry 23(10):2113–2118. https://doi.org/10.1021/bi00305a001

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A 84:5478–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67(6):915–928. https://doi.org/10.1016/j.neuron.2010.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G et al (2011) Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 108:10302–10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bajaj S, Han J (2019) Venom-derived peptide modulators of cation-selective channels: friend, foe or frenemy. Front Pharmacol 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eagles DA, Chow CY, King GF (2020) Fifteen years of NaV 1.7 channels as an analgesic target: why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol. https://doi.org/10.1111/bph.15327

  29. Peigneur S, da Costa Oliveira C, de Sousa Fonseca FC, McMahon KL, Mueller A, Cheneval O, et al (2021) Small cyclic sodium channel inhibitors. Biochem Pharmacol 183:114291

    Article  CAS  PubMed  Google Scholar 

  30. Zhu S, Peigneur S, Gao B, Lu X, Cao C, Tytgat J (2012) Evolutionary diversification of Mesobuthus α-scorpion toxins affecting sodium channels. Mol Cell Proteomics 11(1):M111.012054. https://doi.org/10.1074/mcp.M111.012054

    Article  CAS  PubMed  Google Scholar 

  31. Goncalves TC, Benoit E, Kurz M, Lucarain L, Fouconnier S, Combemale S et al (2019) From identification to functional characterization of cyriotoxin-1a, an antinociceptive toxin from the spider Cyriopagopus schioedtei. Br J Pharmacol 176(9):1298–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sousa SR, Wingerd JS, Brust A, Bladen C, Ragnarsson L, Herzig V et al (2017) Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darling. PLoS One 12:e0182848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chahine M, Plante E, Kallen RG (1996) Sea anemone toxin (ATX II) modulation of heart and skeletal muscle sodium channel a-subunits expressed in tsA201 cells. J Membr Biol 152:39–48

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC et al (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels. Unexpected contributions from differences in the IV/S3-S4 outer loop. J Biol Chem 279:33323–33335. https://doi.org/10.1074/jbc.M404344200

    Article  CAS  PubMed  Google Scholar 

  35. Zaharenko AJ, Schiavon E, Ferreira WA, Lecchi M, Freitas JC, De Richardson M et al (2012) Characterization of selectivity and pharmacophores of type 1 sea anemone toxins by screening seven NaV sodium channel isoforms. Peptides 34:158–167. https://doi.org/10.1016/j.peptides.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  36. Gajewiak J, Azam L, Imperial J, Walewska A, Green BR, Bandyopadhyay PK et al (2014) A disulfide tether stabilizes the block of sodium channels by the conotoxin O-GVIIJ. Proc Natl Acad Sci U S A 111:2758–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR, Bhola RF, et al (2017) Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Sci Rep 7:40883. https://doi.org/10.1038/srep40883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cardoso FC, Dekan Z, Smith JJ, Deuis JR, Vetter I, Herzig V et al (2017) Modulatory features of the novel spider toxin μ-TRTX-Df1a isolated from the venom of the spider Davus fasciatus. Br J Pharmacol 174:2528–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cardoso F, Dekan Z, Rosengren K, Erickson A, Vetter I, Deuis J (2015) Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol Pharmacol 88:291–303. https://doi.org/10.1124/mol.115.098178

    Article  CAS  PubMed  Google Scholar 

  40. Rahnama S, Deuis JR, Cardoso FC, Ramanujam V, Lewis RJ, Rash LD et al (2017) The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE 12:e0173551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EAB (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110:17534–17539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu Z, Cai T, Zhu Q, Deng M, Li J, Zhou X et al (2013) Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the chinese bird spider Ornithoctonus hainana. J Biol Chem 288:20392–20403. https://doi.org/10.1074/jbc.M112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wingerd JS, Mozar CA, Ussing CA, Murali SS, Chin YK, Cristofori-Armstrong B, Durek T, Gilchrist J, Vaughan CW, Bosmans F, Adams DJ, Lewis RJ, Alewood PF, Mobli M, Christie MJ, Rash LD (2017) The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Sci Rep 7(1):974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bossmans F, Rash L, Zhu S, Diochot S, Lazdunski M, Escoubas P, Tytgat J (2006) Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol Pharmacol 69(2):419–429

    Article  CAS  Google Scholar 

  45. Dongol Y, Cardoso FC, Lewis R (2019) Spider knottin pharmacology at voltage-gated sodium channels and their potential to modulate pain pathways. Toxins 11(11):626

    Article  CAS  PubMed Central  Google Scholar 

  46. Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ et al (2010) Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. J Biol Chem 285:4130–4142

    Article  CAS  PubMed  Google Scholar 

  47. Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB et al (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74:1476–1484

    Article  CAS  PubMed  Google Scholar 

  48. Cai T, Luo J, Meng E, Ding J, Liang S, Wang S, Liu Z (2015) Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage gated sodium channels. Peptides 68:148–156

    Article  CAS  PubMed  Google Scholar 

  49. Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins T (2008) Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain II voltage sensor in the closed configuration. J Biol Chem 283:27300–27313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Agwa A, Peigneur S, Chow C, Lawrence N, Craik D, Tytgat J et al (2018) Gating modifier toxins isolated from spider venom: modulation of voltage-gated sodium channels and the role of lipid membranes. J Biol Chem 293:9041–9052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicolas S, Zoukimian C, Bosmans F, Montnach J, Diochot S, Cuypers E et al (2019) Chemical synthesis, proper folding, NaV channel selectivity profile and analgesic properties of the spider peptide phlotoxin 1. Toxins 11:367

    Article  CAS  PubMed Central  Google Scholar 

  52. Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, Yan N (2019) Molecular basis for pore blockade of human Na+ channel Nav1.2 by the μ-conotoxin KIIIA. Science 363(6433):1309–1313

    Article  CAS  PubMed  Google Scholar 

  53. Chen H, Lu S, Leipold E, Gordon D, Hansel A, Heinemann SH (2002) Differential sensitivity of sodium channels from the central and peripheral nervous system to the scorpion toxins Lqh-2 and Lqh-3. Eur J Neurosci 16(4):767–770

    Article  PubMed  Google Scholar 

  54. Leipold E, Lu S, Gordon D, Hansel A, Heinemann SH (2004) Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and Lqh alpha IT with sodium channel receptor sites-3. Mol Pharmacol 65(3):685–691

    Article  CAS  PubMed  Google Scholar 

  55. Silva AO, Peigneur S, Diniz MRV, Tytgat J, Beirão PSL (2012) Inhibitory effect of the recombinant Phoneutria nigriventer Tx1 toxin on voltage-gated sodium channels. Biochimie 94:2756–2763

    Article  CAS  PubMed  Google Scholar 

  56. Murray JK, Ligutti J, Liu D, Zou A, Poppe L, Li H et al (2015) Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the NaV1.7 sodium channel. J Med Chem 58:2299–2314

    Article  CAS  PubMed  Google Scholar 

  57. Maertens C, Cuypers E, Amininasab M, Jalali A, Vatanpour H, Tytgat J (2006) Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae. Mol Pharmacol 70:405–414

    Article  CAS  PubMed  Google Scholar 

  58. Wu B, Murray JK, Andrews KL, Sham K, Long J et al (2018) Discovery of Tarantula venom-derived NaV 1.7-inhibitory JzTx-V peptide 5-Br-Trp24 analogue AM-6120 with systemic block of histamine-induced Pruritis. J Med Chem 61(21):9500–9512

    Article  CAS  PubMed  Google Scholar 

  59. Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting voltage gated sodium channel subtypes: potential analgesics? Toxins 4(11):1236–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Markgraf R, Leipold E, Schirmeyer J, Paolini-Bertrand M, Hartley O, Heinemann SH (2012) Mechanism and molecular basis for the sodium channel subtype specificity of μ-conopeptide CnIIIC. Br J Pharmacol 167:576–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G et al (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemist 41:14734–14747

    Article  CAS  Google Scholar 

  62. Cherki RS, Kolb E, Langut Y, Tsveyer L, Bajayo N, Meir A (2014) Two tarantula venom peptides as potent and differential NaV channels blockers. Toxicon 77:58–67

    Article  CAS  PubMed  Google Scholar 

  63. Moyer BD, Murray JK, Ligutti J, Andrews K, Favreau P, Jordan JB, et al (2018) Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V. PLoS ONE 13(5):e0196791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Murray JK, Wu B, Tegley CM, Nixey TE, Falsey JR, Herberich B et al (2019) Engineering NaV1.7 inhibitory JzTx-V peptides with a potency and basicity profile suitable for antibody conjugation to enhance pharmacokinetics. ACS Chem Biol 14:806–818

    Article  CAS  PubMed  Google Scholar 

  65. Zeng X, Li P, Chen B, Huang J, Lai R, Liu J, Rong M (2018) Selective closed-state Nav1.7 blocker JZTX-34 exhibits analgesic effects against pain. Toxins 10(2):64

    Article  PubMed Central  CAS  Google Scholar 

  66. Chow CY, Cristofori-Armstrong B, Undheim EA, King GF, Rash LD (2015) Three peptide modulators of the human voltage-gated sodium channel 1.7, an important analgesic target, from the venom of an Australian tarantula. Toxins 7:2494–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J et al (2006) μO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A 103:17030–17035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vetter I, Dekan Z, Knapp O, Adams DJ, Alewood PF, Lewis RJ (2012) Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochem Pharmacol 84:540–548

    Article  CAS  PubMed  Google Scholar 

  69. Wang G, Long C, Liu W, Xu C, Zhang M, Li Q et al (2018) Novel sodium channel inhibitor from leeches. Front Pharmacol 9:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Weille JR, Schweitz H, Maest P, Tartart A, Lazdunski M (1991) Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci U S A 88(6):2437–2440

    Google Scholar 

  71. Schweitz H, Heurteaux C, Bois P, Moinier D, Romey G, Lazdunskit M (1994) Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci U S A 91(3):878–82

    Google Scholar 

  72. Stotz SC, Spaetgens RL, Zamponi GW (2000) Block of voltage-dependent calcium channel by the green mamba toxin calcicludine. J Membr Biol 174(2):157–165

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Du L, Peterson BZ (2007) Calcicludine binding to the outer pore of L-type calcium channels is allosterically coupled to dihydropyridine binding. Biochemistry 46(25):7590–7598. https://doi.org/10.1021/bi7001696

    Article  CAS  PubMed  Google Scholar 

  74. Klint JK, Berecki G, Durek T, Mobli M, Knapp O, King GF, Adams DJ, Alewood PF, Rash LD (2014) Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type CaV channels. Biochem Pharmacol 89(2):276–286. https://doi.org/10.1016/j.bcp.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  75. Hansson K, Ma X, Eliasson L, Czerwiec E, Furie B, Furie BC, Rorsman P, Stenflo J (2004) The first γ-carboxyglutamic acid-containing contryphan. A selective L-type calcium ion channel blocker isolated from the venom of Conus marmoreus. J Biol Chem 279(31):32453–32463

    Article  CAS  PubMed  Google Scholar 

  76. Vieira LB, Kushmerick C, Hildebrand ME, Garcia E, Stea A, Cordeiro MN, Richardson M, Gomez MV, Snutch TP (2005) Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J Pharmacol Exp Therap 314(3):1370–1377. https://doi.org/10.1124/jpet.105.087023

    Article  CAS  Google Scholar 

  77. Sidach SS, Mintz IM (2002) Kurtoxin, a gating modifier of neuronal high- and low-threshold Ca2+ channels. J Neurosci 22(6):2023–2034. https://doi.org/10.1523/jneurosci.22-06-02023.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pringos E, Vignes M, Martinez J, Rolland V (2011) Peptide neurotoxins that affect voltage-gated calcium channels: a close-up on ω-agatoxins. Toxins 3(1):17–42. https://doi.org/10.3390/toxins3010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu Rev Biochem 63:823–867

    Article  CAS  PubMed  Google Scholar 

  80. Ertel EA, Warren VA, Adams ME, Griffin PR, Cohen CJ, Smith MM (1994) Type III ω-agatoxins: a family of probes for similar binding sites on L- and N-type calcium channels. Biochemistry 33:5098–5108

    Article  CAS  PubMed  Google Scholar 

  81. Mintz IM, Venemat VJ, Swiderek KM, Lee TD, Bean BP, Adamst ME (1992) P type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355:827–829

    Article  CAS  PubMed  Google Scholar 

  82. Fisher TE, Bourque CW (1995) Distinct w-agatoxin-sensitive calcium currents in somata and axon terminals of rat supraoptic neurones. J Physiol 489(2):383–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Adams ME, Mintz IM, Reily MD, Thanabal V, Bean BP (1993). Structure and properties of ω-agatoxin IVB, a new antagonist of P-type calcium channels. Mol Pharmacol 44(4): 681–688

    Google Scholar 

  84. Sitges M, Galindo CA (2005) ω-Agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals. Neurochem Int 46(1):53–60. https://doi.org/10.1016/j.neuint.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  85. Ramírez D, Gonzalez W, Fissore RA, Carvacho I (2017) Conotoxins as tools to understand the physiological function of voltage-gated calcium (CaV) channels. Mar Drugs 15(10):313

    Article  PubMed Central  CAS  Google Scholar 

  86. Lewis RJ, Nielsen KJ, Craik DJ, Loughnan ML, Adams DA, Sharpe IA, Luchian T, Adams DJ, Bond T, Thomas L et al (2000) Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem 275:35335–35344

    Article  CAS  PubMed  Google Scholar 

  87. Favreau P, Gilles N, Lamthanh H, Bournaud R, Shimahara T, Bouet F, et al (2001) A new ω-conotoxin that targets N-type voltage-sensitive calcium channels with unusual specificity. Biochemistry 40(48):14567–14575

    Article  CAS  PubMed  Google Scholar 

  88. Pluzhnikova K, Vassilevskia A, Korolkovaa Y, Fisyunovb A, Iegorovab O, Krishtalb O, Grishin E (2007) ω-Lsp-IA, a novel modulator of P-type Ca2+ channels. Toxicon 50:993–1004

    Article  CAS  Google Scholar 

  89. Cassola AC, Jaffe H, Fales HM, Afeche SC, Magnoli F, Cipolla-Neto J (1998) ω-Phonetoxin-IIA: a calcium channel blockerfrom the spider Phoneutria nigriventer. Pflügers Arch 436(4):545–552

    Article  CAS  PubMed  Google Scholar 

  90. Dos Santos RG, Van Renterghem C, Martin-Moutot N, Mansuelle P, Cordeiro MN, Diniz CR, et al (2002) Phoneutria nigriventer ω-phonetoxin IIA blocks the Cav2 family of calcium channels and interacts with ω-conotoxin-binding sites. J Biol Chem 277(16): 13856–13862

    Google Scholar 

  91. Miljanich GP, Bitner RS, Bowersox SS, Fox JA, Valentino KL, Yamashiro DH, Tsubokawa M (1993) Screening Method for Neuroprotective Compounds. U.S. Patent 5,424,218 A

    Google Scholar 

  92. Lee S, Kim Y, Keun Back S, Choi HW, Yeon Lee J, Ho Jung H, Ha Ryu J, Suh HW, Sik Na H, Jeong Kim H, Rhim H, Il Kim J (2010) Analgesic effect of highly reversible ω-conotoxin FVIA on N type Ca2+ channels. Mol Pain 6:97–109. https://doi.org/10.1186/1744-8069-6-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Miljanich GP, Bowersox SS, Fox JA, Valentino KL, Bitner RS, Yamashiro DH (1993). Compositions for delayed treatment of ischemia-related neuronal damage. WO Patent 1993010145 A1

    Google Scholar 

  94. Wang F, Yan Z, Liu Z, Wang S, Wu Q, Yu S, Ding J, Dai Q (2016) Molecular basis of toxicity of N-type calcium channel inhibitor MVIIA. Neuropharmacology 101:137–145. https://doi.org/10.1016/j.neuropharm.2015.08.047

    Article  CAS  PubMed  Google Scholar 

  95. Berecki G, Motin L, Haythornthwaite A, Vink S, Bansal P, Drinkwater R, Wang CI, Moretta M, Lewis RJ, Alewood PF, Christie MJ, Adams DJ (2010) Analgesic ω-conotoxins CVIE and CVIF selectively and voltage-dependently block recombinant and Native N-type calcium channels. Mol Pharmacol 77(2):139–148. https://doi.org/10.1124/mol.109.058834

    Article  CAS  PubMed  Google Scholar 

  96. Sousa SR, Vetter I, Lewis RJ (2013) Venom peptides as a rich source of CaV2.2 channel blockers. Toxins 5(2):286–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bindokas VP, Adams ME (1989) ω-Aga-I: a presynaptic calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. J Neurobiol 20(4):171–188

    Article  CAS  PubMed  Google Scholar 

  98. Adams ME, Bindokas VP, Hasegawa L, Venema VJ (1990) ω-Agatoxins: novel calcium channel antagonists of two subtypes from funnel web spider (Agelenopsis aperta) venom. J Biol Chem 265(2):861–867. https://doi.org/10.1016/s0021-9258(19)40129-4

    Article  CAS  PubMed  Google Scholar 

  99. Ertel EA, Warren VA, Adams ME, Griffin PR, Cohen CJ, Smith MM (1994) Type III ω-agatoxins: a family of probes for similar binding sites on L- and N-type calcium channels. Biochemistry 33(17):5098–5108

    Article  CAS  PubMed  Google Scholar 

  100. Yan L, Adams ME (2000) The spider toxin ω-Aga IIIA defines a high affinity site on neuronal high voltage-activated calcium channels. J Biol Chem 275:21309–21316

    Article  CAS  PubMed  Google Scholar 

  101. Meunier FA, Feng ZP, Molgo J, Zamponi GW, Schiavo G, Schenning MP, Proctor DT, Ragnarsson L, Barbier J, Lavidis NA, Molgo JJ, Schiavo G (2002) Glycerotoxin synchronises spontaneous quantal neurotransmitter release independently of action potentials. Proc Aust Physiol Soc 21:6733–6743. http://www.aups.org.au/Proceedings/37/98P

    CAS  Google Scholar 

  102. Richter S, Helm C, Meunier FA, Hering L, Campbell LI, Drukewitz SH, Undheim EAB, Jenner RA, Schiavo G, Bleidorn C (2017) Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system. BMC Evol Biol 17(1):64. https://doi.org/10.1186/s12862-017-0904-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu Z, Bartels P, Sadeghi M, Du T, Dai Q, Zhu C, Yu S et al (2018) A novel α-conopeptide Eu1.6 inhibits N-type (Ca V 2.2) calcium channels and exhibits potent analgesic activity. Sci Rep 8(1):1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Newcomb R, Palma A, Fox J, Gaur S, Lau K, Chung D, Cong R, Bell JR, Home B, Nadasdi L, Ramachandran J (1995) SNX-325, A novel calcium antagonist from the spider Segestria florentina. Biochemistry 34(26):8341–8347. https://doi.org/10.1021/bi00026a015

    Article  CAS  PubMed  Google Scholar 

  105. Peng K, Chen XD, Liang SP (2001) The effect of Huwentoxin-I on Ca2+ channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon 39(4):491–498. https://doi.org/10.1016/S0041-0101(00)00150-1

    Article  CAS  PubMed  Google Scholar 

  106. Vieira LB, Pimenta AM, Richardson M, Bemquerer MP, Reis HJ, Cruz JS, Gomez MV, Santoro MM, Ferreira-de-Oliveira R, Figueiredo SG et al (2007) Leftward shift in the voltage-dependence for Ca2+ currents activation induced by a new toxin from Phoneutria reidyi (Aranae, Ctenidae) venom. Cell Mol Neurobiol 27:129–146

    Article  CAS  PubMed  Google Scholar 

  107. Vieira LB, Kushmerick C, Hildebrand ME, Garcia E, Stea A, Cordeiro MN, Richardson M, Gomez MV, Snutch TP (2005) Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J Pharmacol Exp Therap 314(3):1370–1377. https://doi.org/10.1124/jpet.105.087023

    Article  CAS  Google Scholar 

  108. Bourinet E, Stotz SC, Spaetgens RL, Dayanithi G, Lemos J, Nargeot J, Zamponi GW (2001) Interaction of SNX482 with domains III and IV inhibits activation gating of α1E (CaV2.3) calcium channels. Biophys J 81(1):79–88. https://doi.org/10.1016/S0006-3495(01)75681-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kimm T, Bean BP (2014) Inhibition of A-type potassium current by the peptide toxin SNX-482. J Neurosci 34(28):9182–9189. https://doi.org/10.1523/JNEUROSCI.0339-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ohkubo T, Yamazaki J, Kitamura K (2010) Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ channels Cav3.1 and Cav3.2. J Pharm Sci 112(4):452–458. https://doi.org/10.1254/jphs.09356FP

    Article  CAS  Google Scholar 

  111. Bladen C, Hamid J, Souza IA, Zamponi GW (2014) Block of T-type calcium channels by protoxins I and II. Mol Brain 7(1):36. https://doi.org/10.1186/1756-6606-7-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salari A, Vega BS, Milescu LS, Milescu M (2016) Molecular interactions between tarantula toxins and low-voltage-activated calcium channels. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep23894

    Article  CAS  Google Scholar 

  113. Edgerton BM, Blumenthal KM, Hanck DA (2010) Inhibition of the activation pathway of the T-type calcium channel CaV3.1 by ProTxII. Toxicon 56(4):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Olamendi-Portugal T, Inés García B, López-González I, Van der Walt J, Dyason K, Ulens C, Tytgat J, Felix R, Darszon A, Possani LD (2002) Two new scorpion toxins that target voltage-gated Ca2+ and Na+ channels. Biochem Biophy Res Comm 299(4):562–568. https://doi.org/10.1016/S0006-291X(02)02706-7

    Article  CAS  Google Scholar 

  115. Chuang RSI, Jaffe H, Cribbs L, Perez-Reyes E, Swartz KJ (1998) Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1(8):668–674. https://doi.org/10.1038/3669

    Article  CAS  PubMed  Google Scholar 

  116. Lampe RA, Defeo PA, Davison MD, Young J, Herman JL, Spreen RC, Horn MB, Mangano TJ, Keith RA (1993) Isolation and pharmacological characterization of omega-grammotoxin SIA, a novel peptide inhibitor of neuronal voltage-sensitive calcium channel responses. Mol Pharmacol 44(2):451–460. http://molpharm.aspetjournals.org/content/44/2/451.abstract

    CAS  PubMed  Google Scholar 

  117. McDonough SI, Lampe RA, Keith RA, Bean BP (1997) Voltage-dependent inhibition of N-and P-type calcium channels by the peptide toxin ω-grammotoxin-SIA. Mol Pharmacol 52(6):1095–1104

    Article  CAS  PubMed  Google Scholar 

  118. Piser TM, Lampe RA, Keith RA, Thayer SA (1995) Omega-grammotoxin SIA blocks multiple, voltage-gated, Ca2+ channel subtypes in cultured rat hippocampal neurons. Mol Pharmacol 48(1):131–139. http://molpharm.aspetjournals.org/content/48/1/131.abstract

    CAS  PubMed  Google Scholar 

  119. Dalmolin GD, Silva CR, Rigo FK, Gomes GM, do Nascimento Cordeiro M, Richardson M, Silva MAR, Prado MAM, Gomez MV, Ferreira J (2011) Antinociceptive effect of Brazilian armed spider venom toxin Tx3–3 in animal models of neuropathic pain. Pain 152(10):2224–2232

    Article  CAS  PubMed  Google Scholar 

  120. Cordeiro MdN, de Figueiredo SG, Valentim AdC, Diniz CR, von Eickstedt VR, Gilroy J, Richardson M (1993) Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (keys). Toxicon 31(1):35–42

    Article  CAS  Google Scholar 

  121. Oliveira SM, Silva CR, Trevisan G, Villarinho JG, Cordeiro MN, Richardson M, Borges MH, Castro CJ Jr, Gomez MV, Ferreira J, Ezequiel Dias F, Horizonte B (2016) Antinociceptive effect of a novel armed spider peptide Tx3-5 in pathological pain models in mice. Pflügers Arch Eur J Phys 468:881–894. https://doi.org/10.1007/s00424-016-1801-1

    Article  CAS  Google Scholar 

  122. Peigneur S, de Lima ME, Tytgat J (2018) Phoneutria nigriventer venom: a pharmacological treasure. Toxicon 151:96–110. https://doi.org/10.1016/j.toxicon.2018.07.008

  123. Maria E, Pereira R, Souza JM, Carobin NV, Figueira Silva J, Santos DC, Antonio C, Júnior S, Scardua Binda N, Borges MH, Alves R, Nagem P, Kushmerick C, Ferreira J, Castro Junior J, Ribeiro M, Vinicius Gomez M (2020) Phoneutria toxin PnTx3-5 inhibits TRPV1 channel with antinociceptive action in an orofacial pain model. Neuropharmacology 162:107826–107835. https://doi.org/10.1016/j.neuropharm.2019.107826

    Article  CAS  Google Scholar 

  124. Villegas E, Adachi-Akahane S, Bosmans F, Tytgat J, Nakajima T, Corzo G (2008) Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon 52(2):228–236. https://doi.org/10.1016/j.toxicon.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  125. Wang G, Lemos JR (1994) Effects of funnel web spider toxin on Ca2+ currents in neurohypophysial terminals. Brain Res 663(2):215–222

    Article  CAS  PubMed  Google Scholar 

  126. Ramilo CA, Zafaralla GC, Nadasdij L, Hammerland LG, Yoshikami D, Gray WR, Kristipatij R, Ramachandran J, Miljanichj G, Olivera BM, Cruz LJ (1992) Novel ɑ-and ω-conotoxins from Conus striatus venom. Biochemistry 31(41):9919–9926

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousuf, A., Sadeghi, M., Adams, D.J. (2021). Venom-Derived Peptides Inhibiting Voltage-Gated Sodium and Calcium Channels in Mammalian Sensory Neurons. In: Zhou, L. (eds) Ion Channels in Biophysics and Physiology. Advances in Experimental Medicine and Biology, vol 1349. Springer, Singapore. https://doi.org/10.1007/978-981-16-4254-8_1

Download citation

Publish with us

Policies and ethics