Skip to main content

Used Water Management from Circular Economy Perspective

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management
  • 3398 Accesses

Abstract

This chapter presents wastewater as a valuable source having the potential to contribute towards a circular economy. The rationale and necessities for considering circular economy in wastewater treatment industry have been emphasized by highlighting some of the direct and indirect benefits. The resource potential in wastewater is present in carbon and nutrients, energy, and water forms. Therefore, it is proposed that wastewater should be recognized as a resource and should be appropriately called “Used Water.” This chapter provides discussion on potential pathways through which used water (domestic and industrial wastewater) treatment and management can be tailored to improve the circular economy at different scales of economies. The topics discussed are chemical utilization and recovery, energy consumption and recovery, sludge recovery and management for beneficial uses, and water resource management through integrated process configurations. Various options for energy and resource recovery are discussed through current techno-economics and technology readiness levels. Future needs and research directions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Anderson, The environmental benefits of water recycling and reuse. Water Sci. Technol. Water Supply 3(4), 1–10 (2003)

    Article  CAS  Google Scholar 

  • T.J. Arana, V.G. Gude, A microbial desalination process with microalgae biocathode using sodium bicarbonate as an inorganic carbon source. Int. Biodeterior. Biodegradation 130, 91–97 (2018)

    Article  CAS  Google Scholar 

  • L.T. Arashiro, I. Ferrer, D.P. Rousseau, S.W. Van Hulle, M. Garfí, The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery. Bioresource technology. 280, 27–36 (2019)

    Google Scholar 

  • AWWA Research Foundation, California Energy commission (CEC), New York State Energy Research and Development Authority, Energy Index Development for Benchmarking Water and Wastewater Utilities (AWWARF, Denver, 2007)

    Google Scholar 

  • M.F. Blair, B. Kokabian, V.G. Gude, Light and growth medium effect on Chlorella vulgaris biomass production. J. Environ. Chem. Eng. 2(1), 665–674 (2014)

    Article  CAS  Google Scholar 

  • S. Boranyak, Wastewater Plant Turns Food into Electricity. Civil Engineering (American Society of Civil Engineers, Reston, 2012), p. A2

    Google Scholar 

  • Y.S. Cao, Mass Flow and Energy Efficiency of Municipal Wastewater Treatment Plants (IWA Publishing, London, 2011)

    Google Scholar 

  • E. Cartmell, P. Gostelow, D. Riddell-Black, N. Simms, J. Oakey, J. Morris, P. Jeffrey, P. Howsam, S.J. Pollard, Biosolids a fuel or a waste? An integrated appraisal of five co combustion scenarios with policy analysis. Environ. Sci. Technol. 40, 649–658 (2006)

    Article  CAS  Google Scholar 

  • K.-J. Chae, J. Kang, Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Convers. Manag. 75, 664–672 (2013)

    Article  Google Scholar 

  • G.V. Crawford, Best Practices for Sustainable Wastewater Treatment: Initial Case Study Incorporating European Experience and Evaluation Tool Concept (Water Environment Research Foundation; IWA Publishing, Alexandria, 2010), p. 74

    Google Scholar 

  • D. Doerr, ACEEE case study – Sheboygan, WI: energy efficiency in wastewater treatment plant. Washington, DC (2011), http://aceee.org/sector/local-policy/case-studies/sheboygan-wastewater-treatment-plant

  • EPA, Opportunities for and Benefits of Combined Heat and Power at Wastewater Treatment Facilities, EPA-430-R-07-003 (2007)

    Google Scholar 

  • EPA and USDE, Case Studies in Residential Use and Energy Conservation at Wastewater Treatment Plants (1995)

    Google Scholar 

  • U. Ghimire, V.G. Gude, Accomplishing a NEW (nutrient-energy-water) synergy in a bioelectrochemical nitritation-anammox process. Sci. Rep. 9(1), 1–3 (2019)

    Article  Google Scholar 

  • U. Ghimire, H. Nandimandalam, E. Martinez-Guerra, V.G. Gude, Wetlands for wastewater treatment. Water Environ. Res. 91(10), 1378–1389 (2019)

    Article  CAS  Google Scholar 

  • P. Gikas, Towards energy positive wastewater treatment plants. J. Environ. Manag. 203, 621–629 (2017)

    Article  CAS  Google Scholar 

  • R. Goldstein, W. Smith, Water & Sustainability (Volume 4): US Electricity Consumption for Water Supply & Treatment-the Next Half Century (Electric Power Research Institute, 2002)

    Google Scholar 

  • D. Greer, Directed Biogas to Power Fuel Cells: A Change in California’s Public Utility Commission Rule to Allow Injection of Purified Biomethane into Natural Gas Pipelines Opened the Door for on-Site Power Projects in San Diego. BioCycle (The JG Press Inc, Emmaus, 2011), pp. 47–50

    Google Scholar 

  • V.G. Gude, Energy and water autarky of wastewater treatment and power generation systems. Renew. Sust. Energ. Rev. 45, 52–68 (2015a)

    Article  Google Scholar 

  • V.G. Gude, Energy positive wastewater treatment and sludge management. Edorium J. Waste Manage. 1, 10–15 (2015b)

    Google Scholar 

  • V.G. Gude, Wastewater treatment in microbial fuel cells–an overview. J. Clean. Prod. 122, 287–307 (2016)

    Article  CAS  Google Scholar 

  • V.G. Gude, Integrating bioelectrochemical systems for sustainable wastewater treatment. Clean Techn. Environ. Policy 20(5), 911–924 (2018)

    Article  Google Scholar 

  • V.G. Gude, P.J. Muire, Preparing for outbreaks–implications for resilient water utility operations and services. Sustain. Cities Soc. 64, 102558 (2021)

    Article  Google Scholar 

  • V.G. Gude, B. Kokabian, V. Gadhamshetty, Beneficial bioelectrochemical systems for energy, water, and biomass production. J. Microbiol. Biochem. Technol. 6, 2 (2013)

    Google Scholar 

  • M. Jonasson, I.E.A. Ulf Jeppsson, Energy Benchmark for Wastewater Treatment Processes (Doctoral dissertation, MS Thesis, 2007, Dept. of Industrial Electrical Engineering and Automation Lund University). Lund, Sweden (2007)

    Google Scholar 

  • A.V. Kiselev, E.R. Magaril, E.C. Rada, Energy and sustainability assessment of municipal wastewater treatment under circular economy paradigm. WIT Trans. Ecol. Environ. 237, 109–120 (2019)

    Article  CAS  Google Scholar 

  • B. Kokabian, V.G. Gude, Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ. Sci.: Processes Impacts 15(12), 2178–2185 (2013)

    CAS  Google Scholar 

  • B. Kokabian, U. Ghimire, V.G. Gude, Water deionization with renewable energy production in microalgae-microbial desalination process. Renew. Energy 122, 354–361 (2018a)

    Article  CAS  Google Scholar 

  • B. Kokabian, R. Smith, J.P. Brooks, V.G. Gude, Bioelectricity production in photosynthetic microbial desalination cells under different flow configurations. J. Ind. Eng. Chem. 58, 131–139 (2018b)

    Article  CAS  Google Scholar 

  • B. Kokabian, V.G. Gude, R. Smith, J.P. Brooks, Evaluation of anammox biocathode in microbial desalination and wastewater treatment. Chem. Eng. J. 342, 410–419 (2018c)

    Article  CAS  Google Scholar 

  • M. Linder, R.H. Boyer, L. Dahllöf, E. Vanacore, A. Hunka, Product-level inherent circularity and its relationship to environmental impact. J. Clean. Prod. 260, 121096 (2020)

    Article  Google Scholar 

  • B.E. Logan, Peer reviewed: extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol. 38(9), 160A–167A (2004)

    Article  CAS  Google Scholar 

  • B.E. Logan, Simultaneous wastewater treatment and biological electricity generation. Water Sci. Technol. 52(1–2), 31–37 (2005)

    Article  CAS  Google Scholar 

  • B.E. Logan, Microbial fuel cells (Wiley, Hoboken, 2008)

    Google Scholar 

  • J.H. Long, T.N. Aziz, F.L. delos Reyes III, J.J. Ducoste, Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process. Saf. Environ. 90, 231–245 (2012)

    Article  CAS  Google Scholar 

  • T. Mahmood, A. Elliott, A review of secondary sludge reduction technologies for the pulp and paper industry. Water Res. 40, 2093–2112 (2006)

    Article  CAS  Google Scholar 

  • E. Martinez-Guerra, U. Ghimire, H. Nandimandalam, A. Norris, V.G. Gude, Wetlands for environmental protection. Water Environ. Res. 92(10), 1677–1694 (2020)

    Article  CAS  Google Scholar 

  • F.J. Mazanec, Point Loma Wastewater Treatment Plant (PLWTP). California Energy Commission Staff Workshop on Challenges to Procuring Biomethane in California (California Energy Commission, Sacramento, 2013). p. 2013 May 31

    Google Scholar 

  • P.L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as a net energy producer–can this be achieved? Environ. Sci. Technol. 45(17), 7100–7106 (2011)

    Article  CAS  Google Scholar 

  • W. Mo, Q. Zhang, Energy-nutrients-water nexus: Integrated resource recovery in municipal wastewater treatment plants. J. Environ. Manag. 127, 255–267 (2013)

    Article  CAS  Google Scholar 

  • O. Nowak, S. Keil, C. Fimml, Examples of energy self-sufficient municipal nutrient removal plants. Water Sci. Technol. 64(1), 1–6 (2011)

    Article  CAS  Google Scholar 

  • O. Nowak, P. Enderle, P. Varbanov, Ways to optimize the energy balance of municipal wastewater systems: lessons learned from Austrian applications. J. Clean. Prod. 88, 125–131 (2015)

    Article  CAS  Google Scholar 

  • R.E. Ostapczuk, P.C. Bassette, C. Dassanayake, J.E. Smith, G. Bevington, Achieving zero net energy utilization at municipal WWTPs: the Gloversville-Johnstown Joint WWTP experience. Proceedings of the Water Environment Federation. (6), 1191–1200 (2011)

    Google Scholar 

  • A. Otondo, B. Kokabian, S. Stuart-Dahl, V.G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. J. Environ. Chem. Eng. 6(2), 3213–3222 (2018)

    Article  CAS  Google Scholar 

  • P. Proctor, Achieving Energy Independence at the Gresham Wastewater Treatment Plant (Water World, West Chester, 2011), p. S02

    Google Scholar 

  • M. Saidani, B. Yannou, Y. Leroy, F. Cluzel, A. Kendall, A taxonomy of circular economy indicators. J. Clean. Prod. 207, 542–559 (2019)

    Article  Google Scholar 

  • G. Sarpong, V.G. Gude, Near future energy self-sufficient wastewater treatment schemes. Int. J. Environ. Res. 14, 479–488 (2020)

    Article  CAS  Google Scholar 

  • G. Sarpong, V.G. Gude, B.S. Magbanua, Energy autarky of small scale wastewater treatment plants by enhanced carbon capture and codigestion–a quantitative analysis. Energy Convers. Manag. 199, 111999 (2019)

    Article  CAS  Google Scholar 

  • G. Sarpong, V.G. Gude, B.S. Magbanua, D.D. Truax, Evaluation of energy recovery potential in wastewater treatment based on codigestion and combined heat and power schemes. Energy Convers. Manag. 222, 113147 (2020)

    Article  CAS  Google Scholar 

  • N. Schwarzenbeck, W. Pfeiffer, E. Bomball, Can a wastewater treatment plant be a power plant? A case study. Water Sci. Technol. 57, 1555–1561 (2008)

    Article  CAS  Google Scholar 

  • I. Shizas, D.M. Bagley, Experimental determination of energy content of unknown organics in municipal wastewater streams. J. Energy Eng. 130(2), 45–53 (2004)

    Article  Google Scholar 

  • B.D. Shoener, I.M. Bradley, R.D. Cusick, J.S. Guest, Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environ. Sci.: Processes Impacts 16(6), 1204–1222 (2014)

    CAS  Google Scholar 

  • A. Solimeno, J. García, Microalgae and bacteria dynamics in high rate algal ponds based on modelling results: Long-term application of BIO_ALGAE model. Science of the total environment 650, 1818–1831 (2019)

    Google Scholar 

  • A.S. Stillwell, D.C. Hoppock, M.E. Webber, Energy recovery from wastewater treatment plants in the United States: a case study of the energy-water nexus. Sustainability 2, 945–962 (2010)

    Article  Google Scholar 

  • S. Stuart-Dahl, E. Martinez-Guerra, B. Kokabian, V.G. Gude, R. Smith, J. Brooks, Resource recovery from low strength wastewater in a bioelectrochemical desalination process. Eng. Life Sci. 20(3–4), 54–66 (2020)

    Article  CAS  Google Scholar 

  • B.S. Sturm, S.L. Lamer, An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Applied Energy 88(10), 3499–3506 (2011)

    Google Scholar 

  • M. Sustarsic, Wastewater treatment: understanding the activated sludge process. CEP 26-29 (2009)

    Google Scholar 

  • G. Tchobanoglous, F.L. Burton, D.H. Stensel, Metcalf and Eddy: Wastewater Engineering, Treatment and Reuse, 4th edn. (McGraw Hill, New York, 2003)

    Google Scholar 

  • S. Thieszen, Sheboygan’s journey to sustainability. In: Wisconsin state energy office half-day seminar: turning waste to cash in Wisconsin, September 26, 2013, Madison, WI2013; (2013)

    Google Scholar 

  • C. Tortajada, Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals. NPJ Clean Water 3(1), 1–6 (2020)

    Article  Google Scholar 

  • E. Uggetti, B. Sialve, J. Hamelin, A. Bonnafous, J.P. Steyer, CO2 addition to increase biomass production and control microalgae species in high rate algal ponds treating wastewater. Journal of CO2 Utilization 28, 292–298 (2018)

    Google Scholar 

  • USDOE-Oregon, Bioenergy Optimization Assessment at Wastewater Treatment Plants (Oregon Department of Energy, Portland, 2012)

    Google Scholar 

  • USEPA, Biosolids Technology Fact Sheet: Multi-Stage Anaerobic Digestion (United States Environmental Protection Agency, Washington, DC, 2006)

    Google Scholar 

  • USEPA, Clean Watersheds Needs Survey Overview (2008)

    Google Scholar 

  • H. Wang, S.L. Brown, G.N. Magesan, A.H. Slade, M. Quintern, P.W. Clinton, T.W. Payn, Technological options for the management of biosolids. Environ. Sci. Pollut. Res. 15, 308–317 (2008)

    Article  Google Scholar 

  • B. Wett, K. Buchauer, C. fimml, Energy Self-sufficient as a feasible Concept for Wastewater Treatment systems, Leading-Edge Conference, 4–6 June 2007, Singapore (2007a)

    Google Scholar 

  • R. Wilkinson, Methodology for Analysis of The Energy Intensity of California’s Water Systems, and an Assessment of Multiple Potential Benefits Through Integrated Water-Energy Efficiency Measures. University of California Santa Barbara. Santa Barbara, California (2000)

    Google Scholar 

  • J. Willis, L. Stone, K. Durden, N. Beecher, C. Hemenway, R. Greenwood, Barriers to Biogas Use for Renewable Energy (Water Environment Research Foundation, Alexandria, 2012)

    Book  Google Scholar 

  • J.R. Wiser, J.W. Schettler, J.L. Willis, Evaluation of Combined Heat and Power Technologies for Wastewater Facilities (Brown and Caldwell, Atlanta, 2012)

    Google Scholar 

  • A.E. Zanoni, D.L. Mueller, Calorific value of wastewater plant sludges. J. Environ. Eng. Div. (Am. Soc. Civ. Eng.) 108–109, 187–195 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera Gnaneswar Gude .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gude, V.G. (2022). Used Water Management from Circular Economy Perspective. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_92

Download citation

Publish with us

Policies and ethics